
MPI with Python

Gregor von Laszewski, laszewski@gmail.com
Fidel Leal
Jacques Fleischer

September 3, 2022

mailto:laszewski@gmail.com

MPI with Python September 3, 2022

Contents

1 Preface 5
1.1 Acknowledgement . 5
1.2 Online Availability . 5
1.3 Document Management in GitHub . 5
1.4 Document Notation . 6

2 Introduction 6

3 Installation 7
3.1 Python Version . 7
3.2 Operating Systems and MPI Versions . 8
3.3 Getting the CPU Count . 8
3.4 Windows 10 Home, Education, or Pro . 8
3.5 macOS . 10
3.6 Ubuntu . 10
3.7 Raspberry Pi . 11
3.8 Testing the Installation . 11

4 Hosts, Machinefile, Rankfile 11
4.1 Running MPI on a Single Computer . 11
4.2 Running MPI on Multiple Computers . 12

4.2.1 Prerequisite . 12
4.2.2 Using Hosts . 12
4.2.3 Machinefile . 13
4.2.4 Rankfiles for Multiple Cores . 13

5 MPI Functionality 14
5.1 Di�erences to the C Implementation of MPI . 14

5.1.1 Initialization . 14
5.1.2 Capitalization for Pickle vs. Memory Messages 14
5.1.3 Using NumPy with mpi4py . 15

5.2 MPI Functionality . 15
5.2.1 Communicator . 15
5.2.2 Point-to-Point Communication . 15

5.3 Collective Communication . 20
5.3.1 Broadcast . 20
5.3.2 Scatter . 23
5.3.3 Gather . 25

. 2

MPI with Python September 3, 2022

5.3.4 Allgather Memory Objects . 28
5.4 Process Management . 29

5.4.1 Dynamic Process Management with spawn 29
5.4.2 Futures . 31

6 MPI Example Programs 35
6.1 MPI Ring Example . 35
6.2 Counting Numbers . 37
6.3 Monte Carlo Calculation of Pi . 38

6.3.1 Numba . 42
6.3.2 Running Monte Carlo onmultiple hosts . 46

6.4 Mandelbrot . 47
6.4.1 Assignments . 49

6.5 Other MPI Example Programs . 50
6.6 GPU Programming with MPI . 50

7 Parameter Management 50
7.1 Using the Shell Variables to Pass Parameters . 50

7.1.1 Using click to pass parameters . 52

8 SLURM 53
8.1 Installation of SLURM on a Raspberry Pi Cluster . 53

8.1.1 Method 1 - Install from Host . 54
8.1.2 Method 2 - Install on Manager . 54

8.2 Install SLURM on a Single Raspberry Pi . 56
8.3 MPI Example . 56

9 Links to Other Documents 56
9.1 Assignment . 57

10 Appendix 57
10.1 Git Bash on Windows . 57
10.2 Make on Windows . 58

10.2.1 Installation . 58
10.3 Installing WSL on Windows 10 . 59
10.4 Benchmarks . 60

10.4.1 Prerequisites . 61
10.4.2 System Parameters . 61
10.4.3 Combining the logs . 66

11 Assignments 66

. 3

MPI with Python September 3, 2022

References 67

. 4

MPI with Python September 3, 2022

1 Preface

Gregor von Laszewski has initiated this project as a voluntary summer research project available for
university students.

1.1 Acknowledgement

Besides the coauthors, students who contributed to this document’s very early version are Cooper
Young, Erin Seliger, and Agness Lungua.

1.2 Online Availability

This document is in part published at:

• Medium https://laszewski.medium.com/python-and-mpi-part-1-7e76a6ec1c6d
• Friends Link: https://laszewski.medium.com/python-and-mpi-part-1-7e76a6ec1c6d?sk=cc21
262764659c0ef2d3ddc684f54034

Please check them out as they may include slight improvements.

1.3 Document Management in GitHub

Note: The sourcedocument ismanagest at https://cloudmesh.github.io/cloudmesh-mpi/doc/chapters
Tomake changes or corrections please use a pull request

The repository, documentation, and examples are available at:

• Repository: https://github.com/cloudmesh/cloudmesh-mpi
• Examples: https://github.com/cloudmesh/cloudmesh-mpi/tree/main/examples
• Documents:

– https://cloudmesh.github.io/cloudmesh-mpi/report-mpi.pdf
– https://cloudmesh.github.io/cloudmesh-mpi/report-group.pdf

To check out the repository use

1 $ git clone git@github.com:cloudmesh/cloudmesh-mpi.git

or

1 $ git clone https://github.com/cloudmesh/cloudmesh-mpi.git

In cas eyou have make and docker instaled on your machine, you can create this document locally
with

. 5

https://laszewski.medium.com/python-and-mpi-part-1-7e76a6ec1c6d
https://laszewski.medium.com/python-and-mpi-part-1-7e76a6ec1c6d?sk=cc21262764659c0ef2d3ddc684f54034
https://laszewski.medium.com/python-and-mpi-part-1-7e76a6ec1c6d?sk=cc21262764659c0ef2d3ddc684f54034
https://cloudmesh.github.io/cloudmesh-mpi/doc/chapters
https://github.com/cloudmesh/cloudmesh-mpi
https://github.com/cloudmesh/cloudmesh-mpi/tree/main/examples
https://cloudmesh.github.io/cloudmesh-mpi/report-mpi.pdf
https://cloudmesh.github.io/cloudmesh-mpi/report-group.pdf

MPI with Python September 3, 2022

1 $ make image
2 $ make

Please not that make can also be installed on Windows as documented in our appenix, so you can also
create this document easily on Windows.

1.4 Document Notation

To keep things uniform, we use the following document notations.

1. Empty lines are to be placed before and a�er a context change, such as a headline, paragraph,
list, image inclusion.

2. All code is written in code blocks using and three backquotes. A rendered example looks as
follows:

1 a = "this is an example"

3. Single quote inclusion must be used for filenames and other names as they are referred to in
code blocks.

4. To showcase command inclusion, we use a block but precede every command with a $ or other
prefix indicating the computer on which the command is executed.

1 $ ls

5. The Bibliography is for nowmanaged via markdown footnotes or direct links

2 Introduction

Today Python [1] has become the predominantly programming language to coordinate scientific ap-
plications, especially machine and deep learning applications. However, previously existing parallel
programming paradigms such asMessage Passing Interface (MPI) have proven to be a useful asset
when it comes to enhancing complex data flows while executing them onmultiple computers , includ-
ing supercomputers. The framework is well known in the C-language community. However, many
practitioners do not have the time to learn C to utilize such advanced cyberinfrastructure. Hence, it is
advantageous to access MPI from Python. We showcase how you can easily deploy and use MPI from
Python via a tool called mpi4py.

Message Passing Interface (MPI) is a message-passing standard that allows for e�icient data commu-
nication between the address spaces of multiple processes. The MPI standard began in 1992 as a
collective e�ort by several organizations, institutions, vendors, and users. Since the first dra� of the

. 6

MPI with Python September 3, 2022

specification in November 1993, the standard has undergone several revisions and updates leading to
its current version: MPI 4.0 (June 2021).

Multiple implementations following the standard exist, including the twomost popular MPICH [2] and
OpenMPI [3]. However, other free or commercial implementations exist [[4]][[5]][6].

Additionally, MPI is a language-independent interface. Although support for C andFortran is includedas
part of the standard, multiple libraries providing bindings for other languages are available, including
those for Java, Julia, R, Ruby, and Python.

Thanks to its user-focused abstractions, its standardization, portability, and scalability, and availability
MPI is a popular tool in the creation of high-performance and parallel computing programs.

3 Installation

Next, we discuss how to install mpi4py on various systems. We will focus on installing it on a single
computer using multiple cores.

This Installation section does not cover the installation of SLURM, which is covered in a later section.

3.1 Python Version

Inmost cases you canprobably use thenewest versionof Pythonand thenaddMPI for Python. However,
we have currently only tested it for Python version 3.10.4. If you have tested it on newer versions, please
let us know so we add it here to our compatibility list. While we have not tested it, we do not anticipate
any issues running mpi4py on Windows 11.

Python Version OS Tested Processor

3.10.4 Windows 10 yes AMD

3.10.4 Windows 10 yes Intel

3.9 Windows 10 yes Intel

3.9 Mac yes Intel

3.9.7 Ubuntu 20.04 yes AMD

3.9.7 Ubuntu 20.04 yes Intel

3.10.4 RaspberryOS 11 yes ARM

3.9.2 RaspberryOS 11 yes ARM

. 7

MPI with Python September 3, 2022

3.2 Operating Systems and MPI Versions

The following table shows which operating systems use which version of MPI:

Operating System MPI Version

Windows MS-MPI v10.1.2

macOS Open MPI v4.1.1

Ubuntu MPICH v3.3.2

Raspberry Pi Open MPI v4.1.0

3.3 Getting the CPU Count

For the examples listed in this document, knowing the number of cores on your computer is important.
This can be found out through the command line or a python program.

In Python, you can do it with

1 import multiprocessing
2 multiprocessing.cpu_count()

or as a command line

1 $ python -c "import multiprocessing; print(multiprocessing.cpu_count()
)"

However, you can also use the command line tools that we have included in our documentation.

3.4 Windows 10 Home, Education, or Pro

1. We assume you have installed Git Bash on your computer. The installation is easy, but be careful
to watch the various options at install time. Make sure it is added to the Path variable.

For details see: https://git-scm.com/downloads

2. We also assume you have installed Python3.9 according to either the installation at python.org
or conda. We do recommend the installation from python.org.

https://www.python.org/downloads/

Youwill need to install a python virtual env to avoid conflict by accidentwith your system installed
version of Python.

. 8

https://git-scm.com/downloads
https://www.python.org/downloads/

MPI with Python September 3, 2022

For details on how to do this, please visit our extensive documentation at https://cybertraining-
dsc.github.io/docs/tutorial/reu/python/ under the subsection titled “Python venv”

3. Microso� has its own implementation of MPI which we recommend at this time. First, you need
to downloadmsmpi from

• https://docs.microso�.com/en-us/message-passing-interface/microsoft-mpi#ms-mpi-
downloads

Go to the download link underneath the heading MS-MPI Downloads and download and install
it. Select the two packages and click Next. When downloaded, click on them and complete the
setups.

1 msmpisetup.exe
2 msmpisdk.msi

4. Open the system control panel and click on Advanced system settings (which can be
searched for with the search box in the top-right, and then click View advanced system
settings) and then click Environment Variables...

5. Under the user variables box, click on Path

6. Click New in order to add

C:\Program Files (x86)\Microsoft SDKs\MPI

and

C:\Program Files\Microsoft MPI\Bin

to the Path. The Browse Directory... button makes this easier, and the Variable name
can correspond to each directory, e.g., “MPI” and “MPI Bin” respectively

7. Close any open bash windows and then open a new one

8. Type the command

1 $ which mpiexec

to verify if it works.

9. A�er you verified it is available, install mpi4py with

1 $ pip install mpi4py

ideally, while bash is in venv

10. Next, find out howmany processes you can run on your machine and remember that number.
You can do this with

1 $ wmic CPU Get DeviceID,NumberOfCores,NumberOfLogicalProcessors

. 9

https://cybertraining-dsc.github.io/docs/tutorial/reu/python/
https://cybertraining-dsc.github.io/docs/tutorial/reu/python/
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi#ms-mpi-downloads
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi#ms-mpi-downloads

MPI with Python September 3, 2022

Alternatively, you can use a python program as discussed in the section “Getting the CPU Count”

3.5 macOS

1. Find out howmany processes you can run on your machine and remember that number. You
can do this with

1 $ sysctl hw.physicalcpu hw.logicalcpu

2. First, install python 3 from https://www.python.org/downloads/

3. Next, install homebrew and install the open-mpi version of MPI as well as mpi4py:

1 $ xcode-select --install
2 $ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/

Homebrew/install/HEAD/install.sh)"
3 $ brew install wget
4 $ brew install open-mpi
5 $ python3 -m venv ~/ENV3
6 $ source ~/ENV3/bin/activate
7 $ pip install mpi4py

If you are prompted to install command line developer tools, install them.

3.6 Ubuntu

These instructions apply to 20.04 and 21.04. Please use 20.04 in case you like to use GPUs.

1. First, find out howmany processes you can run on your machine and remember that number.
You can do this with

1 $ nproc

2. The installation ofmpi4py onUbuntu is relatively easy. Please follow these steps. We recommend
that you create a python venv so you do not by accident interfere with your system python. As
usual, you can activate it in your .bashrc file while adding the source line there. Lastly, make
sure you check it out and adjust the -n parameters to the number of cores of your machine. In
our example, we have chosen the number 4, youmay have to change that value

1 $ sudo apt-get update
2 $ sudo apt install python3.9 python3.9-dev python3-dev python3.9-

venv python3.8-venv
3 $ python3 -m venv ~/ENV3
4 $ source ENV3/bin/activate
5 (ENV3) $ sudo apt-get install -y mpich-doc mpich
6 (ENV3) $ pip install mpi4py -U

. 10

https://www.python.org/downloads/

MPI with Python September 3, 2022

Any errors along the lines of

• Python.h: No such file or directory or
• Could not build wheels for mpi4py which use PEP 517

should be fixed by installing python3-dev in the venv

3.7 Raspberry Pi

1. Install Open MPI in your pi by entering the following command assuming a PI4, PI3B+ PI3, PI2:

1 $ python -m venv ~/ENV3
2 $ source ~/ENV3/bin/activate
3 $ sudo apt-get install openmpi-bin
4 $ mpicc --showme:version
5 $ pip install mpi4py

If youhaveother Raspberry Pi’s youmayneed toupdate the core count according to thehardware
specification.

3.8 Testing the Installation

On all systems, the installation is very easy. Just change in our example the number 4 to the number of
cores in your system.

1 (ENV3) $ mpiexec -n 4 python -m mpi4py.bench helloworld

You will see an output similar to

1 Hello, World! I am process 0 of 4 on myhost.
2 Hello, World! I am process 1 of 4 on myhost.
3 Hello, World! I am process 2 of 4 on myhost.
4 Hello, World! I am process 3 of 4 on myhost.

where myhost is the name of your computer.

Note: the messages can be in a di�erent order.

4 Hosts, Machinefile, Rankfile

4.1 Running MPI on a Single Computer

In case you like to try out MPI and just use it on a single computer with multiple cors, you can skip this
section for now and revisit it, once you scale up and use multiple computers.

. 11

MPI with Python September 3, 2022

4.2 Running MPI on Multiple Computers

MPI is designed for running programs on multiple computers. One of these computers serves as
manager and communicates to its workers. To define on which computer is running what, we need to
have a a configuration file that lists a number of hosts to participate in our set of machines, the MPI
cluster.

The configuration file specifying this is called a machinefile or rankfile. We will explain the di�erences
to them in this section.

4.2.1 Prerequisite

Naturally, the requisite to use a cluster is that you

1. have MPI andmpi4py installed on each of the computers, and
2. have access via ssh on each of these computers

If you use a Raspberry PI cluster, we recommend using our cloudmesh-pi-burn program [TODOREF].
This will conveniently create you a Raspberry PI cluster with login features established. You still need
to install mpi4py, however on each node.

If you use another set of resources, you will o�en see the recommendation to use passwordless ssh
key between the nodes. This we only recommend if you are an expert and have placed the cluster
behind a firewall. If you experiment instead with your own cluster, we recommend that you use
password-protected SSHkeys on yourmanager node andpopulate themwith ssh-copy-id to theworker
computers. To not always have to type in your password to the di�erent machines, we recommend
you use ssh-agent, and ssh-add.

4.2.2 Using Hosts

In the case ofmultiple computers, you can simply specify the hosts as a parameter to your MPI program
that you run on your manager node

1 (ENV3) $ mpiexec -n 4 -host re0,red1,red2,red3 python -m mpi4py.bench
helloworld

To specify howmany processes you like to run on each of them, you can use the option -ppn followed
by the number.

1 (ENV3) $ mpiexec -n 4 -pn 2 -host re0,red1,red2,red3 python -m mpi4py.
bench helloworld

As today we usually have multiple cores on a processor, you could be using that core count as the
parameter.

. 12

MPI with Python September 3, 2022

4.2.3 Machinefile

To simplify the parameter passing to MPI you can use machine files instead. This allows you also to
define di�erent numbers of processes for di�erent hosts. Thus it ismore flexible. In fact, we recommend
that you use amachine file in most cases as you then also have a record of how you configured your
cluster.

The machine file is a simple text file that lists all the di�erent computers participating in your cluster.
As MPI was originally designed at a time when there was only one core on a computer, the simplest
machine file just lists the di�erent computers. When starting a programwith themachine file as option,
only one core of the computer is utilized.

The machinefile can be explicitly passed along as a parameter while placing it in the manager ma-
chine

1 mpirun.openmpi \
2 -np 2 \
3 -machinefile /home/pi/mpi_testing/machinefile \
4 python helloworld.py

An example of a simple machinefile contains the IP addresses. The username can be proceeded by the
IP address.

1 pi@192.168.0.10:1
2 pi@192.168.0.11:2
3 pi@192.168.0.12:2
4 pi@192.168.0.13:2
5 pi@192.168.0.14:2

In many cases, your machine namemay be available within your network and known to all hosts in the
cluster. In that case, it is more convenient. To sue the machine names.

1 pi@red0:1
2 pi@red1:2
3 pi@red2:2
4 pi@red3:2
5 pi@red4:2

Please make sure to change the IP addresses or name of your hosts according to your network.

4.2.4 Rankfiles for Multiple Cores

In contrast to the host parameter, you can fine-tune the placement of processes to computers with
a rankfile. This may be important if your hardware has, for example specific computers for data
storage or GPUs.

If you like to addmultiple cores from amachine, you can also use a rankfile

. 13

MPI with Python September 3, 2022

1 mpirun -r my_rankfile --report-bindings ...
2
3 Where the rankfile contains:
4 rank 0=pi@192.168.0.10 slot=1:0
5 rank 1=pi@192.168.0.10 slot=1:1
6 rank 2=pi@192.168.0.11 slot=1:0
7 rank 3=pi@192.168.0.10 slot=1:1

In this configuration, we only use 2 cores from two di�erent PIs.

5 MPI Functionality

In this section, we will discuss several useful MPI communication features.

5.1 Di�erences to the C Implementation of MPI

Before we start with a detailed introduction, we like to make those that have experience with non
Python versions of MPI aware of some di�erences.

5.1.1 Initialization

In mpi4py, the standard MPI_INIT() and MPI_FINALIZE() commonly used to initialize and termi-
nate theMPI environment are automatically handled a�er importing thempi4pymodule. Although not
generally advised, mpi4py still provides MPI.Init() and MPI.Finalize() for users interested in
manually controlling these operations. Additionally, the automatic initialization and termination can
be deactivated. Formore information on this topic, please check the originalmpi4py documentation:

• MPI.Init() and MPI.Finalize()
• Deactivating automatic initialization and termination onmpi4py

5.1.2 Capitalization for Pickle vs. Memory Messages

Another characteristic feature of mpi4py is the availability of uppercase and lowercase communication
methods. Lowercase methods like comm.send() use Python’s picklemodule to transmit objects
in a serialized manner. In contrast, the uppercase versions of methods like comm.Send() enable
transmission of data contained in a contiguousmemory bu�er, as featured in the MPI standard. For
additional information on the topic, the manual section Communicating Python Objects and Array
Data.

. 14

https://githubmemory.com/repo/mpi4py/mpi4py/issues/54
https://bitbucket.org/mpi4py/mpi4py/issues/85/manual-finalizing-and-initializing-mpi
https://mpi4py.readthedocs.io/en/stable/overview.html?highlight=pickle#communicating-python-objects-and-array-data
https://mpi4py.readthedocs.io/en/stable/overview.html?highlight=pickle#communicating-python-objects-and-array-data

MPI with Python September 3, 2022

5.1.3 Using NumPywithmpi4py

Serveral of the examples presented in the following sections useNumPy arrays to illustrate the behavior
of mpi4py’s uppercase communication methods.

NumPy is a Python library geared towards scientific computing. It features high-level mathematical
functions that add support to work with and operate onmulti-dimensional arrays andmatrices.

NumPy quickly gained popularity thanks to its performance advantages in comparison to Python
lists. NumPy array elements must have a uniform type and are stored contiguously in memory. As a
consequence,memory consumption is lower and runtimeperformance improves, since there is noneed
to store type pointers or perform type checks before operating on any element. Type uniformity and
contiguousmemory use also allow for fast and e�icient application of diversemathematical operations
to all indices of an array, making NumPy very attractive for use in statistical analysis, visualization
libraries, and large data manipulation.

An interesting and useful exception to the type uniformity rule can be achieved by defining a NumPy
arrayof Pythonobjects, which allows for anarray containing elements of di�erent sizes/types, including
other NumPy arrays.

To learn more about NumPy installation and use, please check our tutorials in Section 10.2 of Python
for Cloud Computing.

5.2 MPI Functionality

5.2.1 Communicator

All MPI processes need to be addressable and are grouped in a communicator. The default communi-
cator is called world and assigns a rank to each process within the communicator.

Thus all MPI programs we will discuss here start with

1 comm = MPI.COMM_WORLD

In the MPI program, the function

1 rank = comm.Get_rank()

returns the rank. This is useful to be able to write conditional programs that depend on the rank. Rank
0 is the rank of the manager process.

5.2.2 Point-to-Point Communication

5.2.2.1 Send and Receive Python Objects The send() and recv()methods provide for function-
ality to transmit data between two specific processes in the communicator group. It can be applied to

. 15

https://cloudmesh-community.github.io/pub/vonLaszewski-python.pdf#%5B%7B%22num%22%3A4318%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C75%2C720%2C0%5D
https://cloudmesh-community.github.io/pub/vonLaszewski-python.pdf#%5B%7B%22num%22%3A4318%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C75%2C720%2C0%5D

MPI with Python September 3, 2022

any Python data object that can be pickled. The advantage is that the object is preserved, however it
comes with the disadvantage that pickling the data takes more time than a direct memory copy.

Figure 1: Sending and receiving data between two processes

Here is the definition for the send()method:

1 comm.send(buf, dest, tag)

buf represents the data to be transmitted, dest and tag are integer values that specify the rank of the
destination process, and a tag to identify the message being passed, respectively. tag is particularly
useful for cases when a process sends multiple kinds of messages to another process.

On the other end is the recv()method, with the following definition:

1 comm.recv(buf, source, tag, status)

In this case, buf can specify the location for the received data to be stored. In more recent versions of
MPI, ‘buf’ has been deprecated. In those cases, we can simply assign comm.recv(source, tag,
status) as the value of our bu�er variable in the receiving process. Additionally, source and tag can
specify the desired source and tag of the data to be received. They can also be set to MPI.ANY_SOURCE
and MPI.ANY_TAG, or be le� unspecified.

In the following example, an integer is transmitted from process 0 to process 1.

1 #!/usr/bin/env python
2 from mpi4py import MPI
3
4 # Communicator
5 comm = MPI.COMM_WORLD
6
7 # Get the rank of the current process in the communicator group
8 rank = comm.Get_rank()
9
10 # Variable to receive the data
11 data = None
12
13 # Process with rank 0 sends data to process with rank 1
14 if rank == 0:
15 comm.send(42, dest=1)
16
17 # Process with rank 1 receives and stores data
18 if rank == 1:
19 data = comm.recv(source=0)

. 16

MPI with Python September 3, 2022

20
21 # Each process in the communicator group prints its data
22 print(f'After send/receive, the value in process {rank} is {data}')

Executing mpiexec -n 4 python send_receive.py yields:

1 After send/receive, the value in process 2 is None
2 After send/receive, the value in process 3 is None
3 After send/receive, the value in process 0 is None
4 After send/receive, the value in process 1 is 42

As we can see, the transmission only occurred between processes 0 and 1, and no other process was
a�ected.

5.2.2.2 Send and Recive PythonMemory Objects The following example illustrates the use of the
uppercase versions of the methods comm.Send() and comm.Recv() to perform a transmission of
data between processes frommemory to memory. In our example we will again be sending a message
between processors of rank 0 and 1 in the communicator group.

1 #!/usr/bin/env python
2 import numpy as np
3 from mpi4py import MPI
4
5 # Communicator
6 comm = MPI.COMM_WORLD
7
8 # Get the rank of the current process in the communicator group
9 rank = comm.Get_rank()
10
11 # Create empty buffer to receive data
12 buf = np.zeros(5, dtype=int)
13
14 # Process with rank 0 sends data to process with rank 1
15 if rank == 0:
16 data = np.arange(1, 6)
17 comm.Send([data, MPI.INT], dest=1)
18
19 # Process with rank 1 receives and stores data
20 if rank == 1:
21 comm.Recv([buf, MPI.INT], source=0)
22
23 # Each process in the communicator group prints the content of its

buffer
24 print(f'After Send/Receive, the value in process {rank} is {buf}')

Executing mpiexec -n 4 python send_receive_buffer.py yields:

1 After Send/Receive, the value in process 3 is [0 0 0 0 0]
2 After Send/Receive, the value in process 2 is [0 0 0 0 0]
3 After Send/Receive, the value in process 0 is [0 0 0 0 0]

. 17

MPI with Python September 3, 2022

4 After Send/Receive, the value in process 1 is [1 2 3 4 5]

5.2.2.3 Non-blocking Send and Receive MPI can also use non-blocking communications. This
allows the program to send the message without waiting for the completion of the submission. This is
useful for many parallel programs so we can overlap communication and computation while both take
place simultaneously. The same can be done with receive, but if a message is not available and you do
need the message, youmay have to probe or even use a blocked receive. To wait for a message to be
sent or received, we can also use the wait method, e�ectively converting the non-blocking message to
a blocking one.

Next, we showcase an example of the non-blocking send and receive methods comm.isend() and
comm.irecv(). Non-blocking versions of these methods allow for the processes involved in transmis-
sion/reception of data to perform other operations in overlap with the communication. In In contrast,
the blocking versions of these methods previously exemplified do not allow data bu�ers involved
in transmission or reception of data to be accessed until any ongoing communication involving the
particular processes has been finalized.

1 #!/usr/bin/env python
2 from mpi4py import MPI
3
4 # Communicator
5 comm = MPI.COMM_WORLD
6
7 # Get the rank of the current process in the communicator group
8 rank = comm.Get_rank()
9
10 # Variable to receive the data
11 data = None
12
13 # Process with rank 0 sends data to process with rank 1
14 if rank == 0:
15 send = comm.isend(42, dest=1)
16 send.wait()
17
18 # Process with rank 1 receives and stores data
19 if rank == 1:
20 receive = comm.irecv(source=0)
21 data = receive.wait()
22
23 # Each process in the communicator group prints its data
24 print(f'After isend/ireceive, the value in process {rank} is {data}')

Executing mpiexec -n 4 python isend_ireceive.py yields:

1 After isend/ireceive, the value in process 2 is None
2 After isend/ireceive, the value in process 3 is None
3 After isend/ireceive, the value in process 0 is None
4 After isend/ireceive, the value in process 1 is 42

. 18

MPI with Python September 3, 2022

5.2.2.4 Ping Pong This example program uses the aforementioned send() and recv()methods
to print a variable, sendmsg, depending on which rank the MPI program is presently working with.

1 from mpi4py import MPI
2
3 comm = MPI.COMM_WORLD
4 assert comm.size == 2
5
6 if comm.rank == 0:
7 sendmsg = 777
8 comm.send(sendmsg, dest=1, tag=55)
9 recvmsg = comm.recv(source=1, tag=77)
10 else:
11 recvmsg = comm.recv(source=0, tag=55)
12 sendmsg = "abc"
13 comm.send(sendmsg, dest=0, tag=77)
14 print(sendmsg)

This program can only be executed using mpiexec -n 2 python pingpong.py, which yields

1 abc
2 777

Note how, at first line-by-line glace, the program’s code sets sendmsg to 777 before it is set to abc.
However, upon program execution, the output is abc first because of the dest and tag values. On
rank 0 (during program’s initial stages), 777 is sent to destination 1. On rank 1 (remember there are
only two ranks: 0 and 1), abc is sent to destination 0. The destination integers correspond to the ranks
and the program leaves printing the sendmsg for last (a�er the send() and recv()methods have
determined the variable values). This explains the output.

5.2.2.5 Ping Pong with StopWatch This example program uses the aforementioned send() and
recv()methods to print a variable, sendmsg, depending on which rank the MPI program is presently
working with.

1 from mpi4py import MPI
2 from cloudmesh.common.StopWatch import StopWatch
3
4 StopWatch.start("MPI.COMM_WORLD")
5 comm = MPI.COMM_WORLD
6 assert comm.size == 2
7 StopWatch.stop("MPI.COMM_WORLD")
8
9 StopWatch.benchmark()
10
11 StopWatch.start(f"Rank {comm.rank}")

. 19

MPI with Python September 3, 2022

12 if comm.rank == 0:
13 StopWatch.start(f"Rank internal 0 {comm.rank}")
14 sendmsg = 777
15 comm.send(sendmsg, dest=1, tag=55)
16 recvmsg = comm.recv(source=1, tag=77)
17 StopWatch.stop(f"Rank internal 0 {comm.rank}")
18 else:
19 StopWatch.start(f"Rank internal n {comm.rank}")
20 recvmsg = comm.recv(source=0, tag=55)
21 sendmsg = "abc"
22 comm.send(sendmsg, dest=0, tag=77)
23 StopWatch.stop(f"Rank internal n {comm.rank}")
24
25 StopWatch.stop(f"Rank {comm.rank}")
26
27 StopWatch.benchmark()
28
29 print(sendmsg)

This program can only be executed using mpiexec -n 2 python pingpong-stopwatch.py,
which yields

1 abc
2 777

This example is the same as the previous example, but augmented by the use of StopWatch.

5.3 Collective Communication

5.3.1 Broadcast

The bcast()method and it is memory version Bcast() broadcast a message from a specified root
process to all other processes in the communicator group.

5.3.1.1 Broadcast of a Python Object In terms of syntax, bcast() takes the object to be broadcast
and the parameter root, which establishes the rank number of the process broadcasting the data. If
no root parameter is specified, bcastwill default to broadcasting from the process with rank 0.

Thus, the two lines are functionally equivalent.

1 data = comm.bcast(data, root=0)
2 data = comm.bcast(data)

In our following example, we broadcast a two-entry Python dictionary from a root process to the rest
of the processes in the communicator group.

. 20

MPI with Python September 3, 2022

Figure 2: Broadcasting data from a root process to the rest of the processes in the communicator
group

The following code snippet shows the creation of the dictionary in process with rank 0. Notice how the
variable data remains empty in all the other processes.

1 #!/usr/bin/env python
2 from mpi4py import MPI
3
4 # Set up the MPI Communicator
5 comm = MPI.COMM_WORLD
6
7 # Get the rank of the current process in the communicator group
8 rank = comm.Get_rank()
9
10 if rank == 0: # Process with rank 0 gets the data to be broadcast
11 data = {'size': [1, 3, 8],
12 'name': ['disk1', 'disk2', 'disk3']}
13 else: # Other processes' data is empty
14 data = None
15
16 # Print data in each process
17 print(f'before broadcast, data on rank {rank} is: {data}')
18
19 # Data from process with rank 0 is broadcast to other processes in our
20 # communicator group
21 data = comm.bcast(data, root=0)
22
23 # Print data in each process after broadcast
24 print(f'after broadcast, data on rank {rank} is: {data}')

A�er running mpiexec -n 4 python broadcast.pywe get the following:

1 before broadcast, data on rank 3 is: None
2 before broadcast, data on rank 0 is:
3 {'size': [1, 3, 8], 'name': ['disk1', 'disk2', 'disk3']}
4 before broadcast, data on rank 1 is: None
5 before broadcast, data on rank 2 is: None
6 after broadcast, data on rank 3 is:
7 {'size': [1, 3, 8], 'name': ['disk1', 'disk2', 'disk3']}
8 after broadcast, data on rank 0 is:
9 {'size': [1, 3, 8], 'name': ['disk1', 'disk2', 'disk3']}
10 after broadcast, data on rank 1 is:
11 {'size': [1, 3, 8], 'name': ['disk1', 'disk2', 'disk3']}
12 after broadcast, data on rank 2 is:
13 {'size': [1, 3, 8], 'name': ['disk1', 'disk2', 'disk3']}

. 21

MPI with Python September 3, 2022

As we can see, all other processes received the data broadcast from the root process.

5.3.1.2 Broadcast of aMemoryObject In our following example, we broadcast a NumPy array from
process 0 to the rest of the processes in the communicator group using the uppercase comm.Bcast()
method.

1 #!/usr/bin/env python
2 import numpy as np
3 from mpi4py import MPI
4
5 # Communicator
6 comm = MPI.COMM_WORLD
7
8 # Get the rank of the current process in the communicator group
9 rank = comm.Get_rank()
10
11 # Rank 0 gets a NumPy array containing values from 0 to 9
12 if rank == 0:
13 data = np.arange(0, 10, 1, dtype='i')
14
15 # Rest of the processes get an empty buffer
16 else:
17 data = np.zeros(10, dtype='i')
18
19 # Print data in each process before broadcast
20 print(f'before broadcasting, data for rank {rank} is: {data}')
21
22 # Broadcast occurs
23 comm.Bcast(data, root=0)
24
25 # Print data in each process after broadcast
26 print(f'after broadcasting, data for rank {rank} is: {data}')

Executing mpiexec -n 4 python npbcast.py yields:

1 before broadcasting, data for rank 1 is: [0 0 0 0 0 0 0 0 0 0]
2 before broadcasting, data for rank 2 is: [0 0 0 0 0 0 0 0 0 0]
3 before broadcasting, data for rank 3 is: [0 0 0 0 0 0 0 0 0 0]
4 before broadcasting, data for rank 0 is: [0 1 2 3 4 5 6 7 8 9]
5 after broadcasting, data for rank 0 is: [0 1 2 3 4 5 6 7 8 9]
6 after broadcasting, data for rank 2 is: [0 1 2 3 4 5 6 7 8 9]
7 after broadcasting, data for rank 3 is: [0 1 2 3 4 5 6 7 8 9]
8 after broadcasting, data for rank 1 is: [0 1 2 3 4 5 6 7 8 9]

As we can see, the values in the array at the process with rank 0 have been broadcast to the rest of the
processes in the communicator group.

. 22

MPI with Python September 3, 2022

5.3.2 Scatter

While bradcast send all data to all processes, scatter send chunks of data to each process.

In our next example, we will scatter the members of a list among the processes in the communicator
group. We illustrate the concept in the next figure, where we indicate the data that is scattered to the
rnaked processes withDi

Figure 3: Example to scatter data to di�erent processors from the one with rank 0

5.3.2.1 Scatter Python Objects The example program executing the sactter is showcased next

1 #!/usr/bin/env python
2 from mpi4py import MPI
3
4 # Communicator
5 comm = MPI.COMM_WORLD
6
7 # Number of processes in the communicator group
8 size = comm.Get_size()
9
10 # Get the rank of the current process in the communicator group
11 rank = comm.Get_rank()
12
13 # Process with rank 0 gets a list with the data to be scattered
14 if rank == 0:
15 data = [(i + 1) ** 2 for i in range(size)]
16 else:
17 data = None
18
19 # Print data in each process before scattering
20 print(f'before scattering, data on rank {rank} is: {data}')
21
22 # Scattering occurs
23 data = comm.scatter(data, root=0)
24
25 # Print data in each process after scattering
26 print(f'after scattering, data on rank {rank} is: {data}')

. 23

MPI with Python September 3, 2022

Executing mpiexec -n 4 python scatter.py yields:

1 before scattering, data on rank 2 is None
2 before scattering, data on rank 3 is None
3 before scattering, data on rank 0 is [1, 4, 9, 16]
4 before scattering, data on rank 1 is None
5 data for rank 2 is 9
6 data for rank 1 is 4
7 data for rank 3 is 16
8 data for rank 0 is 1

Themembers of the list fromprocess 0havebeen successfully scatteredamong the rest of theprocesses
in the communicator group.

5.3.2.2 Scatter from Python Memory In the following example, we scatter a NumPy array among
the processes in the communicator group by using the uppercase version of the method comm.
Scatter().

1 #!/usr/bin/env python
2 import numpy as np
3 from mpi4py import MPI
4
5 # Communicator
6 comm = MPI.COMM_WORLD
7
8 # Number of processes in the communicator group
9 size = comm.Get_size()
10
11 # Get the rank of the current process in the communicator group
12 rank = comm.Get_rank()
13
14 # Data to be sent
15 sendbuf = None
16
17 # Process with rank 0 populates sendbuf with a 2-D array,
18 # based on the number of processes in our communicator group
19 if rank == 0:
20 sendbuf = np.zeros([size, 10], dtype='i')
21 sendbuf.T[:, :] = range(size)
22
23 # Print the content of sendbuf before scattering
24 print(f'sendbuf in 0: {sendbuf}')
25
26 # Each process gets a buffer (initially containing just zeros)
27 # to store scattered data.
28 recvbuf = np.zeros(10, dtype='i')
29
30 # Print the content of recvbuf in each process before scattering
31 print(f'recvbuf in {rank}: {recvbuf}')
32
33 # Scattering occurs

. 24

MPI with Python September 3, 2022

34 comm.Scatter(sendbuf, recvbuf, root=0)
35
36 # Print the content of sendbuf in each process after scattering
37 print(f'Buffer in process {rank} contains: {recvbuf}')

Executing mpiexec -n 4 python npscatter.py yields:

1 recvbuf in 1: [0 0 0 0 0 0 0 0 0 0]
2 recvbuf in 2: [0 0 0 0 0 0 0 0 0 0]
3 recvbuf in 3: [0 0 0 0 0 0 0 0 0 0]
4 sendbuf in 0: [[0 0 0 0 0 0 0 0 0 0]
5 [1 1 1 1 1 1 1 1 1 1]
6 [2 2 2 2 2 2 2 2 2 2]
7 [3 3 3 3 3 3 3 3 3 3]]
8 recvbuf in 0: [0 0 0 0 0 0 0 0 0 0]
9 Buffer in process 2 contains: [2 2 2 2 2 2 2 2 2 2]
10 Buffer in process 0 contains: [0 0 0 0 0 0 0 0 0 0]
11 Buffer in process 3 contains: [3 3 3 3 3 3 3 3 3 3]
12 Buffer in process 1 contains: [1 1 1 1 1 1 1 1 1 1]

As we can see, the values in the 2-D array at process with rank 0, have been scattered among all our
processes in the communicator group, based on their rank value.

5.3.3 Gather

The gather function is the inverse function to scatter. Data from each process is gathered in consecutive
order based on the rank of the processor.

5.3.3.1 Gather PythonObjects In this example, data from each process in the communicator group
is gathered in the process with rank 0.

Figure 4: Example to gather data to di�erent processors from the one with rank 0

1 #!/usr/bin/env python
2 from mpi4py import MPI
3

. 25

MPI with Python September 3, 2022

4 # Communicator
5 comm = MPI.COMM_WORLD
6
7 # Number of processes in the communicator group
8 size = comm.Get_size()
9
10 # Get the rank of the current process in the communicator group
11 rank = comm.Get_rank()
12
13 # Each process gets different data, depending on its rank number
14 data = (rank + 1) ** 2
15
16 # Print data in each process
17 print(f'before gathering, data on rank {rank} is: {data}')
18
19 # Gathering occurs
20 data = comm.gather(data, root=0)
21
22 # Process 0 prints out the gathered data, rest of the processes
23 # print their data as well
24 if rank == 0:
25 print(f'after gathering, process 0\'s data is: {data}')
26 else:
27 print(f'after gathering, data in rank {rank} is: {data}')

Executing mpiexec -n 4 python gather.py yields:

1 before gathering, data on rank 2 is 9
2 before gathering, data on rank 3 is 16
3 before gathering, data on rank 0 is 1
4 before gathering, data on rank 1 is 4
5 after gathering, data in rank 2 is None
6 after gathering, data in rank 1 is None
7 after gathering, data in rank 3 is None
8 after gathering, process 0's data is [1, 4, 9, 16]

The data from processes with rank 1 to size - 1 have been successfully gathered in process 0.

5.3.3.2 Gather from Python Memory The example showcases the use of the uppercase method
comm.Gather(). NumPy arrays from the processes in the communicator group are gathered into a
2-D array in process with rank 0.

1 #!/usr/bin/env python
2 import numpy as np
3 from mpi4py import MPI
4
5 # Communicator group
6 comm = MPI.COMM_WORLD
7
8 # Number of processes in the communicator group
9 size = comm.Get_size()

. 26

MPI with Python September 3, 2022

10
11 # Get the rank of the current process in the communicator group
12 rank = comm.Get_rank()
13
14 # Each process gets an array with data based on its rank.
15 sendbuf = np.zeros(10, dtype='i') + rank
16
17 # Print the data in sendbuf before gathering
18 print(f'Buffer in process {rank} before gathering: {sendbuf}')
19
20 # Variable to store gathered data
21 recvbuf = None
22
23 # Process with rank 0 initializes recvbuf to a 2-D array conatining
24 # only zeros. The size of the array is determined by the number of
25 # processes in the communicator group
26 if rank == 0:
27 recvbuf = np.zeros([size, 10], dtype='i')
28
29 # Print recvbuf
30 print(f'recvbuf in process 0 before gathering: {recvbuf}')
31
32 # Gathering occurs
33 comm.Gather(sendbuf, recvbuf, root=0)
34
35 # Print recvbuf in process with rank 0 after gathering
36 if rank == 0:
37 print(f'recvbuf in process 0 after gathering: \n{recvbuf}')

Executing mpiexec -n 4 python npgather.py yields:

1 Buffer in process 2 before gathering: [2 2 2 2 2 2 2 2 2 2]
2 Buffer in process 3 before gathering: [3 3 3 3 3 3 3 3 3 3]
3 Buffer in process 0 before gathering: [0 0 0 0 0 0 0 0 0 0]
4 Buffer in process 1 before gathering: [1 1 1 1 1 1 1 1 1 1]
5 recvbuf in process 0 before gathering:
6 [[0 0 0 0 0 0 0 0 0 0]
7 [0 0 0 0 0 0 0 0 0 0]
8 [0 0 0 0 0 0 0 0 0 0]
9 [0 0 0 0 0 0 0 0 0 0]]
10 recvbuf in process 0 after gathering:
11 [[0 0 0 0 0 0 0 0 0 0]
12 [1 1 1 1 1 1 1 1 1 1]
13 [2 2 2 2 2 2 2 2 2 2]
14 [3 3 3 3 3 3 3 3 3 3]]

The values contained in the bu�ers from the di�erent processes in the group have been gathered in
the 2-D array in process with rank 0.

. 27

MPI with Python September 3, 2022

5.3.4 Allgather Memory Objects

This method is a many-to-many communication operation, where data from all processors is gathered
in a continuous memory object on each of the processors. This is functionally equivalent to

1. A gather on rank 0
2. A Scatter from rank 0

However, this operation naturally has a performance bottleneck while all communication goes through
rank0. Instead, we can use parallel communication between all of the processes at once to improve
the performance. The optimization is implicit, and the user does not need to worry about it.

We demonstrate its use in the following example. Each process in the communicator group computes
and stores values in a NumPy array (row). For each process, these values correspond to the multiples
of the process’ rank and the integers in the range of the communicator group’s size. A�er values have
been computed in each process, the di�erent arrays are gathered into a 2D array (table) and distributed
to ALL themembers of the communicator group (as opposed to a single member, which is the case
when comm.Gather() is used instead).

Figure 5: Example to gather the data from each process into ALL of the processes in the group

1 #!/usr/bin/env python
2 import numpy as np
3 from mpi4py import MPI
4
5 # Communicator group
6 comm = MPI.COMM_WORLD
7
8 # Number of processes in the communicator group
9 size = comm.Get_size()
10
11 # Get the rank of the current process in the communicator group
12 rank = comm.Get_rank()
13
14 # Initialize array and table
15 row = np.zeros(size)

. 28

MPI with Python September 3, 2022

16 table = np.zeros((size, size))
17
18 # Each process computes the local values and fills its array
19 for i in range(size):
20 j = i * rank
21 row[i] = j
22
23 # Print array in each process
24 print(f'Process {rank} table before Allgather: {table}\n')
25
26 # Gathering occurs
27 comm.Allgather([row, MPI.INT], [table, MPI.INT])
28
29 # Print table in each process after gathering
30 print(f'Process {rank} table after Allgather: {table}\n')

Executing

1 $ mpiexec -n 4 python allgather_buffer.py

results in the output similar to

1 Process 1 table before Allgather: [[0. 0.][0. 0.]]
2 Process 0 table before Allgather: [[0. 0.][0. 0.]]
3 Process 1 table after Allgather: [[0. 0.][0. 1.]]
4 Process 0 table after Allgather: [[0. 0.][0. 1.]]

As we see, a�er comm.Allgather() is called, every process gets a copy of the full multiplication
table.

We have not provided an example for the Python object version as it is essentially the same and can
easily be developed as an exercise.

5.4 Process Management

5.4.1 Dynamic Process Management with spawn

So far, we have focused on MPI used on a number of hosts that are automatically creating the process
whenmpirun is used. However, MPI also o�ers the ability to spawn a process in a communicator group.
This can be achieved by using a spawn communicator and command.

Using

1 MPI.COMM_SELF.Spawn

will create a child process that can communicate with the parent. In the spawn code example, the
manager broadcasts an array to the worker.

. 29

MPI with Python September 3, 2022

In this example, we have two Python programs: the first one being the manager and the second being
the worker.

Figure 6: Example to spawn a program and start it on the di�erent processors from the one with rank 0

1 #!/usr/bin/env python
2 from mpi4py import MPI
3 import numpy
4 import sys
5 import psutil
6
7 comm = MPI.COMM_SELF.Spawn(sys.executable,
8 args=['mpi-worker.py'],
9 maxprocs=(psutil.cpu_count(logical=False) -

1))
10
11 N = numpy.array(100, 'i')
12 comm.Bcast([N, MPI.INT], root=MPI.ROOT)
13 PI = numpy.array(0.0, 'd')
14 comm.Reduce(None, [PI, MPI.DOUBLE],
15 op=MPI.SUM, root=MPI.ROOT)
16 print(PI)
17
18 comm.Disconnect()

1 #!/usr/bin/env python
2 from mpi4py import MPI
3 import numpy
4
5 comm = MPI.Comm.Get_parent()
6 size = comm.Get_size()
7 rank = comm.Get_rank()
8
9 N = numpy.array(0, dtype='i')
10 comm.Bcast([N, MPI.INT], root=0)
11 h = 1.0 / N; s = 0.0
12 for i in range(rank, N, size):
13 x = h * (i + 0.5)
14 s += 4.0 / (1.0 + x**2)
15 PI = numpy.array(s * h, dtype='d')
16 comm.Reduce([PI, MPI.DOUBLE], None,

. 30

MPI with Python September 3, 2022

17 op=MPI.SUM, root=0)
18
19 comm.Disconnect()

Toexecute the examplewhich calculates the number pi, please go to the examples directory and run the
mpi-manager programwith -n 1. There must only be 1 process because the additional processes are
automatically created within the mpi-manager. The number of processes is automatically calculated
according to the number of cores available minus 1 (because one core is already dedicated to the
manager).

1 $ cd examples/spawn
2 $ mpiexec -n 1 python mpi-manager.py

This will result in an output close to the following:

1 3.1416009869231245

5.4.2 Futures

Futures is an mpi4py module that runs processes in parallel for intercommunication between such
processes. The following Python program creates a visualization of a Julia set by utilizing the Futures
modules, specifically via MPIPoolExecutor.

1 from mpi4py.futures import MPIPoolExecutor
2 import matplotlib.pyplot as plt
3 import numpy as np
4 from cloudmesh.common.StopWatch import StopWatch
5 from cloudmesh.common.variables import Variables
6 import multiprocessing
7
8 StopWatch.start("Overall time")
9
10 v = Variables()
11
12 if (v["multiplier"]):
13 multiplier = int((v["multiplier"]))
14 print(f"Proceeding since multiplier exists: {multiplier=}")
15 pass
16 else:
17 print("No multiplier was input so multiplier defaults to 1\n"
18 "Use `$ cms set multiplier=2` to output higher resolution "
19 "Julia set image")
20 multiplier = 1
21 pass
22 if (v["workers"]):
23 workers = int((v["workers"]))
24 print(f"Proceeding since workers exists: {workers=}")
25 pass
26 else:

. 31

MPI with Python September 3, 2022

27 print("No number of workers was input so workers defaults to 1\n"
28 "We suggest you use",multiprocessing.cpu_count(),
29 "workers for shortest runtime because that is the number of"
30 "threads you have available. Do this by issuing command "
31 f"`$ cms set workers={multiprocessing.cpu_count()}`")
32 workers = 1
33 pass
34
35 x0, x1, w = -2.0, +2.0, 640*multiplier
36 y0, y1, h = -1.5, +1.5, 480*multiplier
37 dx = (x1 - x0) / w
38 dy = (y1 - y0) / h
39
40 c = complex(0, 0.65)
41
42
43 def julia(x, y):
44 z = complex(x, y)
45 n = 255
46 while abs(z) < 3 and n > 1:
47 z = z**2 + c
48 n -= 1
49 return n
50
51
52 def julia_line(k):
53 line = bytearray(w)
54 y = y1 - k * dy
55 for j in range(w):
56 x = x0 + j * dx
57 line[j] = julia(x, y)
58 return line
59
60
61 if __name__ == '__main__':
62 with MPIPoolExecutor(max_workers=workers) as executor:
63 image = executor.map(julia_line, range(h))
64 image = np.array([list(l) for l in image])
65 plt.imsave("julia.png", image)
66
67 StopWatch.stop("Overall time")
68 StopWatch.benchmark()

To run the program, issue this command in Git Bash:

1 $ cms set multiplier=2
2 $ cms set workers=4
3 $ mpiexec -n 1 python julia-futures.py

Note: if command cms is not found, make sure to install cloudmesh-common, cloudmesh_base,
cloudmesh-inventory via pip

. 32

MPI with Python September 3, 2022

Themultiplier variable serves as an integer whichmultiplies the standard resolution of the Julia set
picture, which is 640x480. For example, issuing cms set multipler=3 will produce a 1920x1440
photo since 640x480 times 3 is 1920x1440. Not issuing a cms set command will cause the program to
default to a multiplier of 1. The higher this number, the slower the runtime.

The workers variable serves as an integer which sets the number of workers to spawn for collaborative
program execution. Not exporting this variable will cause it to default to 1 worker. The higher this
number, the faster the runtime (up until the maximum number of threads on the CPU is surpassed).

The futures feature only works with mpiexec -n 1 because it uses a method similar to that of spawn.
Any other number will only repeat the program needlessly; it will not run faster or more e�iciently.

The programwill output a png image of a Julia set upon successful execution.

We created the numba version of this program in an attempt to achieve faster runtimes. Numba
utilizes the jit decorator. For further explanation of numba, please see the Monte Carlo section of this
document.

1 from mpi4py.futures import MPIPoolExecutor
2 import matplotlib.pyplot as plt
3 import numpy as np
4 from numba import jit
5 from cloudmesh.common.StopWatch import StopWatch
6 from cloudmesh.common.variables import Variables
7 import multiprocessing
8
9 StopWatch.start("Overall time")
10
11 v = Variables()
12
13 if (v["multiplier"]):
14 multiplier = int((v["multiplier"]))
15 print(f"Proceeding since multiplier exists: {multiplier=}")
16 pass
17 else:
18 print("No multiplier was input so multiplier defaults to 1\n"
19 "Use `$ cms set multiplier=2` to output higher resolution "
20 "Julia set image")
21 multiplier = 1
22 pass
23 if (v["workers"]):
24 workers = int((v["workers"]))
25 print(f"Proceeding since workers exists: {workers=}")
26 pass
27 else:
28 print("No number of workers was input so workers defaults to 1\n"
29 "We suggest you use",multiprocessing.cpu_count(),
30 "workers for shortest runtime because that is the number of"
31 "threads you have available. Do this by issuing command "
32 f"`$ cms set workers={multiprocessing.cpu_count()}`")
33 workers = 1

. 33

MPI with Python September 3, 2022

34 pass
35
36 x0, x1, w = -2.0, +2.0, 640*multiplier
37 y0, y1, h = -1.5, +1.5, 480*multiplier
38 dx = (x1 - x0) / w
39 dy = (y1 - y0) / h
40
41 c = complex(0, 0.65)
42
43
44 @jit(nopython=True)
45 def julia(x, y):
46 z = complex(x, y)
47 n = 255
48 while abs(z) < 3 and n > 1:
49 z = z**2 + c
50 n -= 1
51 return n
52
53
54 def julia_line(k):
55 line = bytearray(w)
56 y = y1 - k * dy
57 for j in range(w):
58 x = x0 + j * dx
59 line[j] = julia(x, y)
60 return line
61
62
63 if __name__ == '__main__':
64 with MPIPoolExecutor(max_workers=workers) as executor:
65 image = executor.map(julia_line, range(h))
66 image = np.array([list(l) for l in image])
67 plt.imsave("julia.png", image)
68
69 StopWatch.stop("Overall time")
70 StopWatch.benchmark()

No Jit 1 Worker 2 Workers 6 Workers 12 Workers 20 Workers

640x480 22.470 s 12.220 s 4.946 s 4.384 s 5.257 s

1280x960 45.951 s 23.702 s 8.982 s 6.258 s 6.523 s

1920x1440 68.779 s 34.652 s 12.933 s 8.385 s 8.042 s

Jit Enabled 1 Worker 2 Workers 6 Workers 12 Workers 20 Workers

640x480 24.551 s 12.499 s 5.632 s 5.054 s 6.616 s

. 34

MPI with Python September 3, 2022

Jit Enabled 1 Worker 2 Workers 6 Workers 12 Workers 20 Workers

1280x960 46.183 s 23.406 s 9.543 s 7.190 s 8.226 s

1920x1440 68.366 s 34.569 s 12.938 s 9.278 s 8.854 s

• These benchmark times were generated using a Ryzen 5 3600 CPUwith 16 GB RAM on aWindows
10 computer. The Ryzen 5 3600 is a 6-core, 12-thread processor.

No Jit 1 Worker 2 Workers 3 Workers 4 Workers

640x480 51.555 s 49.103 s 48.501 s 48.983 s

1280x960 66.044 s 56.652 s 53.693 s 52.929 s

1920x1440 87.918 s 68.069 s 61.836 s 59.414 s

• These benchmark times were generated using a Raspberry Pi 4 Model B 2018 with 8 GB RAM on a
Raspbian 10 (codename buster) OS. It uses an ARM Cortex-A72 4-core, 4-thread processor. On
this Raspberry Pi, 4 workers can be used via the cms set workers=4 and mpirun -np 1 --
oversubscribe python julia-futures.py commands. However, any number of workers
greater than 4 causes the program to hang and timeout with an unknown MPI spawn error, likely
because the Pi does not support using a greater number of threads. Also, numba cannot be used
on Pi.

Jit does not appear to shorten the program runtimes, causing it to be longer in most instances except
for a few higher resolution outputs.

6 MPI Example Programs

In this section, we will showcase to you some simple MPI example programs.

6.1 MPI Ring Example

The MPI Ring example program is one of the classical programs every MPI programmer has seen. Here
amessage is sent from themanager to the workers while the processors are arranged in a ring, and the
last worker sends the message back to the manager. Instead of just doing this once, our program does
it multiple times and adds every time a communication is done 1 do the integer send around. Figure 1
showcases the process graph of this application.

. 35

MPI with Python September 3, 2022

Figure 7: Processes organized in a ring perform a sum operation

In the example, the user provides an integer that is transmitted from the process with rank 0, to process
with rank 1, and so on until the data returns to process 0. Each process increments the integer by 1
before transmitting it to the next one, so the final value received by process 0 a�er the ring is complete
is the sum of the original integer plus the number of processes in the communicator group.

1 #!/usr/bin/env python
2 # USSAGE: mpieec -n 4 python ring.py --count 1000
3 from mpi4py import MPI
4 import click
5 from cloudmesh.common.StopWatch import StopWatch
6
7 @click.command()
8 @click.option('--count', default=1, help='Number of messages send.')
9 @click.option('--debug', default=False, help='Set debug.')
10 def ring(count=1, debug=False):
11 comm = MPI.COMM_WORLD # Communicator
12 rank = comm.Get_rank() # Get the rank of the current process
13 size = comm.Get_size() # Get the size of the communicator group
14 if rank == 0:
15 print(f'Communicator group with {size} processes')
16 data = int(input('Enter an integer to transmit: ')) # Input

the data
17 data += 1 # Data is

modified
18 if rank == 0: # ONly processor 0 uses the stopwatch
19 StopWatch.start(f"ring {size} {count}")
20 for i in range(0, count):
21 if rank == 0:
22 comm.send(data, dest=rank + 1) # send data to neighbor
23 data = comm.recv(data, source=size - 1)
24 if debug:
25 print(f'Final data received in process 0: {data}')
26 elif rank == size - 1:
27 data = comm.recv(source=rank - 1) # recieve data from

neighbor
28 data += 1 # Data is modified
29 comm.send(data, dest=0) # Sent to process 0,

closing the ring
30 elif 0 < rank < size -1:
31 data = comm.recv(source=rank - 1) # recieve data from

neighbor
32 data += 1 # Data is modified

. 36

MPI with Python September 3, 2022

33 comm.send(data, dest=rank + 1) # send to neighbor
34 if rank == 0:
35 print(f'Final data received in process 0: {data}')
36 assert data == count * size # verify
37 if rank == 0:
38 StopWatch.stop(f"ring {size} {count}") #print the time
39 StopWatch.benchmark()
40
41 if __name__ == '__main__':
42 ring()

Executing the code in the example by entering mpiexec -n 2 python ring.py in the terminal will
produce the following result:

1 Communicator group with 4 processes
2 Enter an integer to transmit: 6
3 Process 0 transmitted value 7 to process 1
4 Process 1 transmitted value 8 to process 2
5 Process 2 transmitted value 9 to process 3
6 Process 3 transmitted value 10 to process 0
7 Final data received in process 0 after ring is completed: 10

As we can see, the integer provided to process 0 (6 in this case) was successively incremented by each
process in the communicator group to return a final value of 10 at the end of the ring.

6.2 Counting Numbers

The following program generates arrays of random numbers each 20 (n) in length with the highest
number possible being 10 (max_number). It then uses a function called count() to count the number of
8’s in each data set. The number of 8’s in each list is stored count_data. Count_data is then summed
and printed out as the total number of 8’s.

The program allows you to set the program parameters. Note that the program has on purpose a bug
in it as it does not communicate the values m, max_number, or find with a broadcast from rank 0 to all
workers. Your task is to modify and complete this program.

1 # Run with
2 # mpiexec -n 4 python count.py
3
4 # To change the values set them on your terminal on the
5 # machine running rank 0 with
6
7 # export N=20
8 # export MAX=10
9 # export FIND=8
10
11 # Assignment:
12 # Add to this code the bradcast of the 3 parameters to all workers
13

. 37

MPI with Python September 3, 2022

14 import os
15 import random
16 from mpi4py import MPI
17
18 # Get the input values or set them to a default
19 n = int(os.environ.get("N") or 20)
20 max_number = int(os.environ.get("MAX") or 10)
21 find = int(os.environ.get("FIND") or 8)
22
23
24 comm = MPI.COMM_WORLD # Communicator
25 size = comm.Get_size() # Number of processes
26 rank = comm.Get_rank() # Rank of this process
27
28 # Each process gets different data, depending on its rank number
29 data = []
30 for i in range(n):
31 r = random.randint(1, max_number)
32 data.append(r)
33 count = data.count(find)
34
35 print(rank, count, data) # Print data from each process
36 count_data = comm.gather(count, root=0) # Gather the data
37
38 # Process 0 prints out the gathered data, rest of the processes
39 if rank == 0:
40 print(rank, count_data)
41 total = sum(count_data)
42 print(f"Total number of {find}'s:", total)

Executing mpiexec -n 4 python count.py gives us:

1 1 1 [7, 5, 2, 1, 5, 5, 5, 4, 5, 2, 6, 5, 2, 1, 8, 7, 10, 9, 5, 6]
2 3 3 [9, 2, 9, 8, 2, 7, 7, 2, 10, 1, 2, 5, 3, 5, 10, 8, 10, 10, 8, 10]
3 2 3 [1, 3, 8, 5, 7, 8, 4, 2, 8, 5, 10, 7, 10, 1, 6, 5, 9, 6, 6, 7]
4 0 3 [6, 9, 10, 2, 4, 8, 8, 9, 4, 1, 6, 8, 6, 9, 7, 5, 5, 6, 3, 4]
5
6 0 [3, 1, 3, 3]
7
8 Total number of 8's: 10

6.3 Monte Carlo Calculation of Pi

A very nice example to showcase the potential for doing lots of parallel calculations is to calculate the
number pi. This is quite easily achieved while using a Monte Carlo Method.

We start with the mathematical formulation of the Monte Carlo calculation of pi. For each quadrant of
the unit square, the area is pi. Therefore, the ratio of the area outside of the circle is pi over four. With
this in mind, we can use the Monte Carlo Method for the calculation of pi.

. 38

MPI with Python September 3, 2022

The following is a visualization of the program’s methodology to calculate pi:

Figure 8:montecarlographic

The following montecarlo.py program generates an estimation of pi using the methodology and
equation shown above. Increasing the total number of iterations will increase the accuracy.

1 import random as r
2 import math as m
3 import time
4
5 start = time.time()
6
7 inside = 0 # Number of darts that land inside.
8 trials = 100000 # Number of Trials.
9
10 for i in range(0, trials): # Iterate for the number of darts.
11 x2 = r.random()**2 # Generate random x, y in [0, 1]
12 y2 = r.random()**2
13
14 if m.sqrt(x2 + y2) < 1.0: # Increment if inside unit circle.
15 inside += 1
16
17 # inside / trials = pi / 4
18 pi = (float(inside) / trials) * 4
19 end = time.time()
20
21 print(pi) # Value of pi found
22 print(end - start) # Execution time

Instead of running this on one processor, we can run the calculation onmany. Implicitly this increases
the accuracy while running more trials at the same time as we run them all in parallel. Overhead does
exist by starting the MPI program and gathering the result. However, if the trial number is large enough,
it is negligible.

The following program shows the MPI implementation [7]:

1 # Originaly from https://cvw.cac.cornell.edu/python/exercise
2 # Modified by the cloudmesh team

. 39

MPI with Python September 3, 2022

3 """
4 An estimate of the numerical value of pi via Monte Carlo integration.
5 Computation is distributed across processors via MPI.
6 """
7
8 import numpy as np
9 from mpi4py import MPI
10 import matplotlib
11 matplotlib.use('Agg')
12 import matplotlib.pyplot as plt
13 import sys
14 from cloudmesh.common.StopWatch import StopWatch
15
16 StopWatch.start("Overall time")
17 def throw_darts(n):
18 """
19 returns an array of n uniformly random (x,y) pairs lying within the
20 square that circumscribes the unit circle centered at the origin,
21 i.e., the square with corners at (-1,-1), (-1,1), (1,1), (1,-1)
22 """
23 darts = 2*np.random.random((n,2)) - 1
24 return darts
25
26 def in_unit_circle(p):
27 """
28 returns a boolean array, whose elements are True if the

corresponding
29 point in the array p is within the unit circle centered at the

origin,
30 and False otherwise -- hint: use np.linalg.norm to find the length

of a vector
31 """
32 return np.linalg.norm(p,axis=-1)<=1.0
33
34 def estimate_pi(n, block=100000):
35 """
36 returns an estimate of pi by drawing n random numbers in the square
37 [[-1,1], [-1,1]] and calculating what fraction land within the unit

circle;
38 in this version, draw random numbers in blocks of the specified

size,
39 and keep a running total of the number of points within the unit

circle;
40 by throwing darts in blocks, we are spared from having to allocate
41 very large arrays (and perhaps running out of memory), but still

can get
42 good performance by processing large arrays of random numbers
43 """
44 total_number = 0
45 i = 0
46 while i < n:
47 if n-i < block:
48 block = n-i

. 40

MPI with Python September 3, 2022

49 darts = throw_darts(block)
50 number_in_circle = np.sum(in_unit_circle(darts))
51 total_number += number_in_circle
52 i += block
53 return (4.*total_number)/n
54
55 def estimate_pi_in_parallel(comm, N):
56 """
57 on each of the available processes,
58 calculate an estimate of pi by drawing N random numbers;
59 the manager process will assemble all of the estimates
60 produced by all workers, and compute the mean and
61 standard deviation across the independent runs
62 """
63
64 if rank == 0:
65 data = [N for i in range(size)]
66 else:
67 data = None
68 data = comm.scatter(data, root=0)
69 #
70 pi_est = estimate_pi(N)
71 #
72 pi_estimates = comm.gather(pi_est, root=0)
73 if rank == 0:
74 return pi_estimates
75
76
77 def estimate_pi_statistics(comm, Ndarts, Nruns_per_worker):
78 results = []
79 for i in range(Nruns_per_worker):
80 result = estimate_pi_in_parallel(comm, Ndarts)
81 if rank == 0:
82 results.append(result)
83 if rank == 0:
84 pi_est_mean = np.mean(results)
85 pi_est_std = np.std(results)
86 return pi_est_mean, pi_est_std
87
88 if __name__ == '__main__':
89 """
90 for N from 4**5 to 4**14 (integer powers of 4),
91 compute mean and standard deviation of estimates of pi
92 by throwing N darts multiple times (Nruns_total times,
93 distributed across workers)
94 """
95 comm = MPI.COMM_WORLD
96 rank = comm.Get_rank()
97 size = comm.Get_size()
98 if rank == 0:
99 print("MPI size = {}".format(size))
100 sys.stdout.flush()
101 Nruns_total = 64

. 41

MPI with Python September 3, 2022

102 Nruns_per_worker = Nruns_total // size
103 #
104 estimates = []
105 for log4N in range(5,15):
106 N = int(4**log4N)
107 result = estimate_pi_statistics(comm, N, Nruns_per_worker)
108 if rank == 0:
109 pi_est_mean, pi_est_std = result
110 estimates.append((N, pi_est_mean, pi_est_std))
111 print(N, pi_est_mean, pi_est_std)
112 sys.stdout.flush()
113 if rank == 0:
114 estimates = np.array(estimates)
115 plt.figure()
116 plt.errorbar(np.log2(estimates[:,0]), estimates[:,1], yerr=

estimates[:,2])
117 plt.ylabel('estimate of pi')
118 plt.xlabel('log2(number of darts N)')
119 plt.savefig('pi_vs_log2_N.png')
120 plt.figure()
121 plt.ylabel('log2(standard deviation)')
122 plt.xlabel('log2(number of darts N)')
123 plt.plot(np.log2(estimates[:,0]), np.log2(estimates[:,2]))
124 plt.savefig('log2_std_vs_log2_N.png')
125 MPI.Finalize()
126
127 StopWatch.stop("Overall time")
128 StopWatch.benchmark()

To run this program using git bash, change directory to the folder containing this program and issue
the command:

1 $ mpiexec -n 4 python parallel_pi.py

The number a�er -n can be changed to however many cores one has on their processor.

However, running this program takes upwards of 4 minutes to complete with 6 cores. We can use
numba to speed up the program execution time.

Additionally, we can run this program onmultiple hosts. For instance, you can use a machinefile or
rankfile to execute the program on a PI cluster.

6.3.1 Numba

Numba, an open-source JIT (just in time) compiler, is a Pythonmodule that translates Python code
into machine code for faster runtimes.

The numba version of the Monte Carlo program runs faster, even cutting runtime down by a few
minutes:

. 42

MPI with Python September 3, 2022

1 # Originally from https://cvw.cac.cornell.edu/python/exercise
2 # Modified by the cloudmesh team
3 from __future__ import print_function, division
4 """
5 An estimate of the numerical value of pi via Monte Carlo integration.
6 Computation is distributed across processors via MPI.
7 """
8
9 import numpy as np
10 from mpi4py import MPI
11 import matplotlib
12 matplotlib.use('Agg')
13 import matplotlib.pyplot as plt
14 import sys
15 from numba import jit
16 from cloudmesh.common.StopWatch import StopWatch
17
18 StopWatch.start("Overall time")
19 @jit(nopython=True)
20 def throw_darts(n):
21 """
22 returns an array of n uniformly random (x,y) pairs lying within the
23 square that circumscribes the unit circle centered at the origin,
24 i.e., the square with corners at (-1,-1), (-1,1), (1,1), (1,-1)
25 """
26 darts = 2*np.random.random((n,2)) - 1
27 return darts
28
29 def in_unit_circle(p):
30 """
31 returns a boolean array, whose elements are True if the

corresponding
32 point in the array p is within the unit circle centered at the

origin,
33 and False otherwise -- hint: use np.linalg.norm to find the length

of a vector
34 """
35 return np.linalg.norm(p,axis=-1)<=1.0
36
37 def estimate_pi(n, block=100000):
38 """
39 returns an estimate of pi by drawing n random numbers in the square
40 [[-1,1], [-1,1]] and calculating what fraction land within the unit

circle;
41 in this version, draw random numbers in blocks of the specified

size,
42 and keep a running total of the number of points within the unit

circle;
43 by throwing darts in blocks, we are spared from having to allocate
44 very large arrays (and perhaps running out of memory), but still

can get
45 good performance by processing large arrays of random numbers

. 43

MPI with Python September 3, 2022

46 """
47 total_number = 0
48 i = 0
49 while i < n:
50 if n-i < block:
51 block = n-i
52 darts = throw_darts(block)
53 number_in_circle = np.sum(in_unit_circle(darts))
54 total_number += number_in_circle
55 i += block
56 return (4.*total_number)/n
57
58 def estimate_pi_in_parallel(comm, N):
59 """
60 on each of the available processes,
61 calculate an estimate of pi by drawing N random numbers;
62 the manager process will assemble all of the estimates
63 produced by all workers, and compute the mean and
64 standard deviation across the independent runs
65 """
66
67 if rank == 0:
68 data = [N for i in range(size)]
69 else:
70 data = None
71 data = comm.scatter(data, root=0)
72 #
73 pi_est = estimate_pi(N)
74 #
75 pi_estimates = comm.gather(pi_est, root=0)
76 if rank == 0:
77 return pi_estimates
78
79 def estimate_pi_statistics(comm, Ndarts, Nruns_per_worker):
80 results = []
81 for i in range(Nruns_per_worker):
82 result = estimate_pi_in_parallel(comm, Ndarts)
83 if rank == 0:
84 results.append(result)
85 if rank == 0:
86 pi_est_mean = np.mean(results)
87 pi_est_std = np.std(results)
88 return pi_est_mean, pi_est_std
89
90 if __name__ == '__main__':
91 """
92 for N from 4**5 to 4**14 (integer powers of 4),
93 compute mean and standard deviation of estimates of pi
94 by throwing N darts multiple times (Nruns_total times,
95 distributed across workers)
96 """
97 comm = MPI.COMM_WORLD
98 rank = comm.Get_rank()

. 44

MPI with Python September 3, 2022

99 size = comm.Get_size()
100 if rank == 0:
101 print("MPI size = {}".format(size))
102 sys.stdout.flush()
103 Nruns_total = 64
104 Nruns_per_worker = Nruns_total // size
105 #
106 estimates = []
107 for log4N in range(5,15):
108 N = int(4**log4N)
109 result = estimate_pi_statistics(comm, N, Nruns_per_worker)
110 if rank == 0:
111 pi_est_mean, pi_est_std = result
112 estimates.append((N, pi_est_mean, pi_est_std))
113 print(N, pi_est_mean, pi_est_std)
114 sys.stdout.flush()
115 if rank == 0:
116 estimates = np.array(estimates)
117 plt.figure()
118 plt.errorbar(np.log2(estimates[:,0]), estimates[:,1], yerr=

estimates[:,2])
119 plt.ylabel('estimate of pi')
120 plt.xlabel('log2(number of darts N)')
121 plt.savefig('pi_vs_log2_N.png')
122 plt.figure()
123 plt.ylabel('log2(standard deviation)')
124 plt.xlabel('log2(number of darts N)')
125 plt.plot(np.log2(estimates[:,0]), np.log2(estimates[:,2]))
126 plt.savefig('log2_std_vs_log2_N.png')
127 MPI.Finalize()
128
129 StopWatch.stop("Overall time")
130 StopWatch.benchmark()

Notehowbefore thedefinitionof functions in this code, there is the@jit(nopython=True)decorator,
which translates each defined function into faster machine code. To install and use numba, simply
issue the command pip install numba within a terminal. Here is the command to execute the
numba version of the Monte Carlo program:

1 $ mpiexec -n 4 python parallel_pi_numba.py

Cores parallel_pi.py execution time parallel_pi_numba.py execution time

6 237.873 s 169.678 s

5 257.720 s 199.572 s

4 326.811 s 239.160 s

3 383.343 s 289.433 s

2 545.500 s 403.289 s

. 45

MPI with Python September 3, 2022

Cores parallel_pi.py execution time parallel_pi_numba.py execution time

1 1075.68 s 810.525 s

• These benchmark times were generated using a Ryzen 5 3600 CPUwith 16 GB RAM on aWindows
10 computer.

Note: Please be advised that we use Cloudmesh.StopWatch which is a convenient program to measure
time and display the details for the computer. However, it is not threadsafe and, at this time, only
measures times in the second range. If your calculations for other programs are faster or the trial
number is too slow, you can use other benchmarking methods.

6.3.2 Running Monte Carlo onmultiple hosts

Another way to increase the performance of our programwould be executing it on multiple hosts.

As an example, we can run the program in a cluster of 7 PIs: a manager PI4, and six worker PI3s. Be
advised, however, that we do not use numba on RaspberryOS, hence execution can take a relatively
long time in comparison to the numba version. For a reference, simultaneously running a copy of the
programon the cluster (7 processes total) took around 40minutes. However, using amachinefile to run
four copies of the program on each node (for a total of 28 processes) significantly sped up execution,
taking only a fourth of that time (~ 10 minutes).

First, we need to make sure that mpi4py is installed on all PIs. For that purpose, you can follow our
tutorial to Deploy MPI for Python (mpi4py) on your Pi Cluster using Cloudmesh.

Next, we send a copy of the program to each of the hosts in our cluster. It is important that the file be
stored in the same directory address for every host. For this example, we send it to the home directory
~/.

1 (ENV3) pi@red:~ $ for h in red red0{1..6}; do
2 > scp parallel_pi.py pi@$h:~/ &
3 > done
4 [4] 2176
5 [5] 2177
6 [6] 2178
7 [7] 2179
8 [8] 2180
9 [9] 2181
10 [10] 2182
11 (ENV3) pi@red:~ $

Next, we create a machinefile to specify the number of hosts and cores to be employed by mpi4py
during execution. Notice that we are employing the four available cores on each node.

. 46

https://cloudmesh.github.io/pi/tutorial/mpi/

MPI with Python September 3, 2022

1 pi@red slots=4
2 pi@red01 slots=4
3 pi@red02 slots=4
4 pi@red03 slots=4
5 pi@red04 slots=4
6 pi@red05 slots=4
7 pi@red06 slots=4

Wewill need to save themachinefile only in the node fromwhich the mpiexec command is executed.

Finally, we run the program by calling mpiexec from the command line. Note we have added the
parameter -machinefile to specify the machinefile location. Additionally we used the full address
of the Python binary from ENV3 to ensure that every host runs the program inside our environment.

1 (ENV3) pi@red:~ $ mpiexec -n 28 -machinefile ./machinefile ~/ENV3/bin/
python parallel_pi.py

2 MPI size = 28
3 1024 3.1455775669642856 0.05692609648889646
4 4096 3.138096400669643 0.02867811562631138
5 16384 3.1421116420200894 0.01228796385009885
6 65536 3.1414925711495534 0.005532607075034393
7 262144 3.1418974740164622 0.0029191407443025902
8 1048576 3.141772815159389 0.0017866555629716318
9 4194304 3.1415172815322876 0.0008114422251076501
10 16777216 3.1416021159717014 0.0003635004457387496
11 67108864 3.1415649854711125 0.0001929914184235647
12 268435456 3.1416016641472067 9.638285643379315e-05
13 ...

6.4 Mandelbrot

We can run a programwhich outputs a visualization of a Mandelbrot data set, which, like the Julia set,
is a fractal (the image repeats itself upon zooming in). This program runs processes in parallel and also
has numba JIT decorators to achieve faster runtimes:

1 from matplotlib import pyplot
2 from mpi4py import MPI
3 import numpy
4 from numba import jit
5 from cloudmesh.common.StopWatch import StopWatch
6
7
8 @jit(nopython=True)
9 def mandelbrot(x, y, maxit):
10 c = x + y * 1j
11 z = 0 + 0j
12 it = 0
13 while abs(z) < 2 and it < maxit:
14 z = z ** 2 + c

. 47

MPI with Python September 3, 2022

15 it += 1
16 return it
17
18
19 x1, x2 = -2.0, 1.0
20 y1, y2 = -1.0, 1.0
21 w, h = 1200, 800
22 maxit = 127
23
24 comm = MPI.COMM_WORLD
25 size = comm.Get_size()
26 rank = comm.Get_rank()
27 if rank == 0:
28 StopWatch.start(f'parallel {size}')
29 # number of rows to compute here
30 N = h // size + (h % size > rank)
31
32 # first row to compute here
33 start = comm.scan(N) - N
34
35 # array to store local result
36 Cl = numpy.zeros([N, w], dtype='i')
37
38 dx = (x2 - x1) / w
39 dy = (y2 - y1) / h
40 for i in range(N):
41 y = y1 + (i + start) * dy
42 for j in range(w):
43 x = x1 + j * dx
44 Cl[i, j] = mandelbrot(x, y, maxit)
45
46 # gather results at root (process 0)
47
48 counts = comm.gather(N, root=0)
49 C = None
50 if rank == 0:
51 C = numpy.zeros([h, w], dtype='i')
52
53 rowtype = MPI.INT.Create_contiguous(w)
54 rowtype.Commit()
55
56 comm.Gatherv(sendbuf=[Cl, MPI.INT],
57 recvbuf=[C, (counts, None), rowtype],
58 root=0)
59
60 rowtype.Free()
61
62 if rank == 0:
63 StopWatch.stop(f'parallel {size}')
64
65 pyplot.imsave('mandelbrot-parallel-numba.png', C)
66 pyplot.imsave('mandelbrot-parallel-numba.pdf', C)
67

. 48

MPI with Python September 3, 2022

68 StopWatch.benchmark()
69 # pyplot.imshow(C, aspect='equal')
70 # pyplot.show()

Like other programs, mandelbrot can be executed via mpiexec -n 4 python mandelbrot-
parallel-numba.py, with the appropriate -n parameter according to the user’s system.

At rank 0, the program starts and ends a benchmark for analysis of which -n parameter will give the
shortest runtime.

Cores mandelbrot-parallel.py execution time
mandelbrot-parallel-numba.py execution
time

6 3.071 s 0.422 s

5 3.791 s 0.434 s

4 3.920 s 0.427 s

3 5.769 s 0.473 s

2 5.010 s 0.520 s

1 9.891 s 1.765 s

• These benchmark times were generated using a Ryzen 5 3600 CPUwith 16 GB RAM on aWindows
10 computer.

This programwill save an image and pdf called mandelbrot:

Figure 9:mandelbrot

6.4.1 Assignments

1. Use numba to speed up the code. Create a tutporial including instalation instructions.
2. Display results with matplotlib as created by the picture
3. Modify cloudmesh.Stopwatch so we can use it for smaller timemeasurments

. 49

MPI with Python September 3, 2022

6.5 Other MPI Example Programs

You will find lots of example programs on the internet when you search for it. Please let us know
about such examples and we will add the here. You can also contribute to our repository and add
example programs that we then include in this document. In return you will become a co-author or get
acknowledged.

• A program to calculate k-means is provided at

– https://medium.com/@hyeamykim/parallel-k-means-from-scratch-2b297466fdcd

6.6 GPU Programming with MPI

In case you have access to computers with GPUs, you can naturally utilize them accordingly from
Python with the appropriate GPU drivers.

In case not all have aGPU, you can use rankfiles to control the access and introduce through conditional
programming based on rank access to the GPUs.

7 Parameter Management

Although this next topic is not directly related to MPI and mpi4py, it is very useful in general. O�en
we ask ourselves the question, “how do we pass parameters to a program, including MPI?” There are
multiple ways to achieve this, for example, with environment variables, command-line arguments,
and configuration files. We will explain each of these methods and provide simple examples.

7.1 Using the Shell Variables to Pass Parameters

os.environ in Python allows us to easily access environment variables that are defined in a shell. It
returns a dictionary having the user’s environmental variable as key and their values as value.

To demonstrate its use, we have written a count.py program that uses os.environ to optionally
pass parameters to an MPI program.

This example is included in a previous section named Counting Numbers and we like you to look it
over.

If the user changed the value of N, MAX, or FIND in the terminal using, for example, export FIND="5"
(shown below) os.environ.get(“FIND”) would set the find variable equal to 5.

1 $ export FIND="5"
2 $ mpiexec -n 4 python count.py

. 50

https://medium.com/@hyeamykim/parallel-k-means-from-scratch-2b297466fdcd

MPI with Python September 3, 2022

3 1 1 [6, 3, 3, 8, 4, 1, 1, 4, 4, 3, 8, 5, 10, 8, 8, 7, 2, 4, 1, 9]
4 3 0 [3, 1, 4, 1, 6, 4, 9, 3, 1, 8, 8, 6, 4, 3, 7, 1, 8, 6, 1, 1]
5 2 3 [5, 5, 4, 6, 8, 5, 9, 3, 7, 7, 10, 6, 7, 3, 2, 8, 3, 10, 7, 10]
6 0 3 [7, 8, 6, 9, 6, 7, 5, 6, 1, 2, 1, 2, 9, 5, 9, 8, 5, 1, 8, 1]
7 0 [3, 1, 3, 0]
8 Total number of 5's: 7

However, if the user does not define any environment variables, FIND will default to 8.

1 $ mpiexec -n 4 python count.py
2 1 0 [5, 5, 2, 6, 6, 3, 5, 3, 3, 2, 3, 9, 7, 1, 3, 7, 1, 7, 1, 3]
3 3 1 [7, 1, 5, 1, 2, 2, 10, 7, 2, 1, 2, 6, 4, 6, 10, 10, 5, 8, 10, 10]
4 2 0 [5, 1, 4, 4, 9, 9, 5, 1, 1, 3, 9, 3, 5, 2, 5, 7, 9, 7, 10, 5]
5 0 1 [6, 6, 5, 6, 4, 10, 3, 5, 5, 2, 5, 2, 7, 6, 7, 8, 5, 7, 6, 4]
6 0 [1, 0, 0, 1]
7 Total number of 8's: 2

Assignment:

1. One thingwedid not do is use the broadcastmethod to properly communicate the 3 environment
variables. We like you to improve the code and submit to us.

Let us assume we use the Python program

1 from cloudmesh.common.StopWatch import StopWatch
2 from time import sleep
3 import os
4
5 n=int(os.environ["N"])
6 StopWatch.start(f"processors {n}")
7 sleep(0.1*n)
8 print(n)
9 StopWatch.stop(f"processors {n}")
10 StopWatch.benchmark()

This Python program does not set a variable N on its own. It refers to os.environ which is a module that
refers to variables exported within the same shell that executes the program.

Setting the variable/parameter can either be done via the export shell command such as

1 $ export N=8

or while passing the parameter in the same line as a command such as demonstrated next

1 $ N=1; python environment-parameter.py

This can be generalized while using a file withmany di�erent parameters and commands. For example,
placing this in a file called run.shwith these contents:

1 $ N=1; python environment-parameter.py
2 $ N=2; python environment-parameter.py

. 51

MPI with Python September 3, 2022

It allows us to execute the programs sequentially in the file with

1 $ sh run.py

In our case, we are also using cloudmesh.StopWatch to allow us easily to fgrep for the results wemay
be interested in to conduct benchmarks. Here is an example workflow to achieve this

1 # This command creates an environment variable called N
2 $ export N=10
3 # This command prints the environment variable called N
4 $ echo $N
5 # This command launches a Python environment
6 $ python -i
7 >>> import os
8 >>> os.environ["N"]
9 >>> exit()
10 $ python environment-parameter.py
11 $ sh run.sh
12 $ sh run.sh | fgrep "csv,processors"

7.1.1 Using click to pass parameters

Click is a convenient mechanism to define parameters that can be passed via options to python
programs. To showcase its use please inspect the following program

1 import click
2 from cloudmesh.common.StopWatch import StopWatch
3 from time import sleep
4 import os
5
6 @click.command()
7 @click.option('--n', default=1, help='Number of processors.')
8 def work(n):
9 n=int(n)
10 StopWatch.start(f"processors {n}")
11 sleep(0.1*n)
12 print(n)
13 StopWatch.stop(f"processors {n}")
14 StopWatch.benchmark()
15
16 if __name__ == '__main__':
17 work()

You canmanually set the variable in git bash in the same line as you open the .py file

1 $ python click-parameter.py --n=3

. 52

MPI with Python September 3, 2022

8 SLURM

In case you run long running jobs, it is o�en useful to have access to a batch queuing system. Such a
batch queue enables one to submit the jobs to a queue nd they are scheduled for execution based on
a sceheduling policy. One such framework is SLURM. We describe how to use mpi4py from a batch
queueing systemwith SLURM.

Slurm stands for Simple Linux Utility for ResourceManagement. It is an open-source job scheduler
for a compute cluster to carry out tasks e�iciently and in a particular order while using the cluster’s
resources. SLURM supports batch jobs but also allows the use of resources in interactive mode. SLURM
is a popular batch queueing system used onmany advanced supercomputers. However, it is possible
to install and use SLURM on a cluster of Raspberry Pis. SLURM can utilize mpi4py to achieve a unique
processing power that replaces the use of individual computer threads with entire computers in and of
themselves.

8.1 Installation of SLURM on a Raspberry Pi Cluster

The installation takes around an hour on a cluster of four Raspberry Pi 4 Model B computers.

To use the cloudmesh SLURM command, onemust have cloudmesh installed by using the following
commands.

We assume you are in a venv Python environment. Ours is called (ENV3)

1 (ENV3) you@yourlaptop $ mkdir ~/cm
2 (ENV3) you@yourlaptop $ cd ~/cm
3 (ENV3) you@yourlaptop $ pip install cloudmesh-installer
4 (ENV3) you@yourlaptop $ cloudmesh-installer get pi

Initialize the cms command:

1 (ENV3) you@yourlaptop $ cms help

Then clone the cloudmesh-slurm repository:

1 (ENV3) you@yourlaptop $ cd ~/cm
2 (ENV3) you@yourlaptop $ cloudmesh-installer get cmd5
3 (ENV3) you@yourlaptop $ git clone https://github.com/cloudmesh/

cloudmesh-slurm.git
4 (ENV3) you@yourlaptop $ cd cloudmesh-slurm
5 (ENV3) you@yourlaptop $ pip install -e .
6 (ENV3) you@yourlaptop $ cms help

Youmay proceed if slurm shows in the documented commands.

A�er following the burn tutorial and ensuring that the cluster is online, you have two methods of
installing SLURM.

. 53

https://cloudmesh.github.io/pi/tutorial/raspberry-burn-windows/

MPI with Python September 3, 2022

8.1.1 Method 1 - Install from Host

You can install SLURM on a cluster by executing commands from the host computer. The host computer
is the same computer that is previously burned your SD Cards and is referred to as you@yourlaptop.
This machine can be used to ssh into each of the Pis.

To install it, use the command:

1 (ENV3) you@yourlaptop $ cms slurm pi install as host --hosts=red,red0
[1-4]

The --hosts parameter needs to include the hostnames of your cluster, including manager and
workers, separated by comma using a parameterized naming scheme.

The user can also specify a --partition parameter, as in --partition=mycluster, to personalize
the name of the partition.

The commandwill take a long time to finish. It may appear to not progress at certain points, but please
be patient. However they will last hopefully not longer than 45 minutes. The reason this takes such a
long time is that at time of writing of this tutorial, the prebuilt SLURM packages did not work, so we
compile it from source.

Once the script completes, you can check if SLURM is installed by issuing on the manager:

(ENV3)pi@red:~ $ srun --nodes=4 hostname

and replacing the --nodes parameter with the number of workers.

You will see an output similar to

1 (ENV3) you@yourlaptop $ ssh red
2 (ENV3) pi@red:~ $ srun --nodes=4 hostname
3 red01
4 red02
5 red03
6 red04

The nodes may be out of order. That is okay and normal.

8.1.2 Method 2 - Install on Manager

Themanager Pi is the designated Raspberry Pi computer that will act as the central headquarters of
the entire cluster. The manager runs the slurmctld daemon, which is the controller of all the nodes
and their jobs. In our documentation, our example manager is named red.

This method is for those who do not want to use a host computer to facilitate the installation; instead,
the installation is run directly on themanager Pi. However, this method is more tedious as the user
must reconnect to the Pi a�er it reboots to rerun the script (three times in total).

. 54

MPI with Python September 3, 2022

8.1.2.1 Install cloudmesh on Manager Pi This method involves the user logging into the manager
via ssh and first installing cloudmesh in the manager with:

1 (ENV3) you@yourhostcomputer $ ssh red
2 pi@red $ curl -Ls http://cloudmesh.github.io/get/pi | sh -

This output is printed upon successful installation.

1 Please activate with
2
3 source ~/ENV3/bin/activate
4
5 Followed by a reboot

A�er activating venv with the source command and rebooting via sudo reboot, issue the com-
mands:

1 (ENV3) you@yourhostcomputer $ ssh red
2 pi@red:~ $ cd ~/cm
3 pi@red:~/cm $ git clone https://github.com/cloudmesh/cloudmesh-slurm.

git
4 pi@red:~/cm $ cd cloudmesh-slurm
5 pi@red:~/cm/cloudmesh-slurm $ pip install -e .
6 pi@red:~/cm/cloudmesh-slurm $ cms help

The slurm command should appear in the list.

8.1.2.2 Install SLURM onManager Pi Run this command to begin SLURM installation:

1 pi@red:~/cm/cloudmesh-slurm $ cms slurm pi install --workers=red0[1-4]

The user can also specify a --partition parameter, as in --partition=mycluster, to personalize
the name of the partition.

The user must ssh back into the manager a�er the cluster reboots and perform the last command
(cms slurm pi install. . .) 3 more times. The script will inform the user when this is no longer necessary
and SLURM is fully installed.

You can check if SLURM is installed by issuing on the manager:

srun --nodes=4 hostname

and replacing the --nodes parameter with the number of workers.

You will see an output similar to

1 (ENV3) pi@red:~ $ srun --nodes=4 hostname
2 red01
3 red02
4 red03
5 red04

. 55

MPI with Python September 3, 2022

The nodes may be out of order. That is okay and normal.

8.2 Install SLURM on a Single Raspberry Pi

Instead of installing SLURMon an entire cluster, let us now consider the case inwhich you only have one
Raspberry Pi. To make job management simple on this Pi, we can install SLURM on that one computer.
This one computer has no workers and is a manager to its own self. The user can make and automate
jobs for simplicity’s sake, and the same computer will carry out those jobs.

Single-node installation, which is a SLURM cluster with only one node, can be easily configured by
using the host command with the manager and workers listed as the same hostname. In the following
example, red is the single-node.

1 cms slurm pi install as host --hosts=red,red

8.3 MPI Example

To run a test MPI example, ssh into the manager and then use the example command. This is only
possible if cms is installed on the Pi; if you have not done this because you installed SLURM via the host
method, then refer to the “Install cloudmesh on Manager Pi” section to install cloudmesh on the Pi.
Then run the following (change the number a�er --n to the number of nodes):

1 (ENV3) you@yourhostcomputer $ ssh red
2 pi@red:~ $ cms slurm pi example --n=4

Thiscms slurmcommandrunssalloc -N 4 mpiexec python -m mpi4py.bench helloworld
but the number a�er -N is altered to whatever is input for the --n parameter. Do not run the salloc
command. It is unnecessary when we have already implemented it within the aforementioned
cms slurm pi example command. It is just listed here for reference. The output will be similar
to:

1 pi@red:~ $ cms slurm pi example --n=4
2 salloc: Granted job allocation 17
3 Hello, World! I am process 0 of 4 on red01.
4 Hello, World! I am process 1 of 4 on red02.
5 Hello, World! I am process 2 of 4 on red03.
6 Hello, World! I am process 3 of 4 on red04.
7 salloc: Relinquishing job allocation 17

9 Links to Other Documents

Here are a couple of links that may be useful. We have not yet looked over them but include them.

. 56

MPI with Python September 3, 2022

• https://research.computing.yale.edu/sites/default/files/files/mpi4py.pdf
• https://www.nesi.org.nz/sites/default/files/mpi-in-python.pdf
• https://www.kth.se/blogs/pdc/2019/08/parallel-programming-in-python-mpi4py-part-1/
• http://education.molssi.org/parallel-programming/03-distributed-examples-mpi4py/index.h
tml

• http://www.ceci-hpc.be/assets/training/mpi4py.pdf
• https://www.csc.fi/documents/200270/224366/mpi4py.pdf/825c582a-9d6d-4d18-a4ad-
6cb6c43fefd8

9.1 Assignment

1. Review the resources and provide a short summary that we add to this document above the
appropriate link

10 Appendix

10.1 Git Bash onWindows

Git bash is a implementation of the bash shell fro windows that also includes Git.

Git is an open-source so�ware which helps to manage repository version control, particularly with
GitHub repos.

To verify whether you have Git in the first place, you can press Win + R on your desktop, type cmd,
and press Enter. Then type git clone and press Enter. If you do not have Git installed, it will say
'git'is not recognized as an internal or external command...

As long as Git does not change the structure of their website and hyperlinks, you should be able to
download Git from here and skip to Step #2: https://git-scm.com/downloads

1. Open a web browser and search git. Look for the result that is from git-scm.com and click
Downloads.

2. Click Download for Windows. The download will commence. Open the file once it is finished
downloading.

3. The UAC Prompt will appear. Click Yes because Git is a safe program. It will show you Git’s
license: a GNU General Public License. A�er understanding the terms, click Next. 1. The GNU
General Public License means that the program is open-source (free of charge).

4. Click Next to confirm that C:\Program Files\Git is the directory where you want Git to be
installed.

. 57

https://research.computing.yale.edu/sites/default/files/files/mpi4py.pdf
https://www.nesi.org.nz/sites/default/files/mpi-in-python.pdf
https://www.kth.se/blogs/pdc/2019/08/parallel-programming-in-python-mpi4py-part-1/
http://education.molssi.org/parallel-programming/03-distributed-examples-mpi4py/index.html
http://education.molssi.org/parallel-programming/03-distributed-examples-mpi4py/index.html
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
https://www.csc.fi/documents/200270/224366/mpi4py.pdf/825c582a-9d6d-4d18-a4ad-6cb6c43fefd8
https://www.csc.fi/documents/200270/224366/mpi4py.pdf/825c582a-9d6d-4d18-a4ad-6cb6c43fefd8

MPI with Python September 3, 2022

5. Click Next unless you would like an icon for Git on the desktop (in which case you can check the
box and then click Next).

6. Click Next to accept the text editor, click Next again to Let Git decide the default branch name,
click Next again to run Git from the command line and 3rd party so�ware, click Next again to
use the OpenSSL library, click Next again to checkout Windows-style, click Next again to use
MinTTY, click Next again to use the default git pull, click Next again to use the Git Credential
Manager Core, click Next again to enable file system caching, and then click Install because
the experimental features are not necessary.

7. Wait for the green progress bar to finish. Congratulations— you have installed Git and Git Bash.
You can now run it as an administrator by pressing the Windows key, typing git bash, right
clicking Git Bash, and clicking Run as administrator. Click Yes in the UAC prompt that
appears.

10.2 Make onWindows

Makefiles provide a good feature to organize workflows while assembling programs or documents to
create an integrated document. Within makefiles you can define targets that you can call and are
then executed. Preconditions can be used to execute rules conditionally. This mechanism can easily be
used to define complex workflows that require a multitude of interdependent actions to be performed.
Makefiles are executed by the program make that is available on all platforms.

On Linux, it is likely to be pre-installed, while on macOS you can install it with Xcode. On Windows, you
have to install it explicitly. We recommend that you install gitbash first. A�er you install gitbash, you
can install make from an administrative gitbash terminal window. To start one, go to the search field
next to the Windows icon on the bottom le� and type in gitbash without a RETURN. You will then see a
selection window that includes Run as administrator. Click on it. As you run it as administrator,
it will allow you to install make. The following instructions will provide you with a guide to install make
under windows.

10.2.1 Installation

Please visit

• https://sourceforge.net/projects/ezwinports/files/

and download the file

• ‘make-4.3-without-guile-w32-bin.zip’

A�er the download, you have to extract and unzip the file as follows in a gitbash that you started as an
administrative user:

. 58

https://sourceforge.net/projects/ezwinports/files/
https://sourceforge.net/projects/ezwinports/files/make-4.3-without-guile-w32-bin.zip/download

MPI with Python September 3, 2022

Figure 10: administrativegitbash

Figure: Screenshot of opening gitbash in admin shell

1 $ cp make-4.3-without-guile-w32-bin.zip /usr
2 $ cd /usr
3 $ unzip make-4.3-without-guile-w32-bin.zip

Now start a new terminal (a regular non-administrative one) and type the command

1 $ which make

It will provide you the location if the installation was successful

1 /usr/bin/make

to make sure it is properly installed and in the correct directory.

10.3 Installing WSL onWindows 10

WSL is a layer that allows the running of Linux executables on a Windowsmachine.

To install WSL2 your computer must have Hyper-V support enabled. This does not work on Windows
Home, and you need to upgrade toWindows Pro, Edu, or some other Windows 10 version that supports
it. Windows Edu is typically free for educational institutions. The Hyper-V must be enabled from your
BIOS, and you need to change your settings if it is not enabled.

More information about WSL is provided at

• https://docs.microso�.com/en-us/windows/wsl/install-win10

To install WSL2, you can follow these steps while using Powershell as an administrative user and run

1 ps$ dism.exe /online /enable-feature /featurename:Microsoft-Hyper-V-All
/all /norestart

2 ps$ dism.exe /online /enable-feature /featurename:Microsoft-Windows-
Subsystem-Linux /all /norestart

3 ps$ dism.exe /online /enable-feature /featurename:
VirtualMachinePlatform /all /norestart

4 ps$ wsl --set-default-version 2

. 59

https://docs.microsoft.com/en-us/windows/wsl/install-win10

MPI with Python September 3, 2022

The next command will restart your computer so make sure that all your files and applications are
saved:

1 ps$ Restart-Computer

Windows will say that it is working on updates (enabling the features). Once logging back in, download
this msi file, open it and complete the installation to update WSL:

• https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi

Once the installation is complete, download and install the Ubuntu 20.04 LTS image from the Microso�
store:

• https://www.microsoft.com/en-us/p/ubuntu/9nblggh4msv6?activetab=pivot:overviewtab

and click Launch.

Run Ubuntu and create a username and passphrase.

Make sure not just to give an empty passphrase but choose a secure one.

Next run in a new instance of elevated (admin) Powershell:

1 ps$ wsl.exe --set-version Ubuntu 2

Now you can use theUbuntu distro freely. TheWSL2 applicationwill be in your shortcutmenu in Start.
You can launch this WSL2 and install MPI on it by referring to the Ubuntu installation instructions at
the beginning of this document. The same number of cores and threads will be available to use in the
mpiexec command as the number of cores and threads on the host computer.

10.4 Benchmarks

This sectiion is in more detail published at this link. If the link does not work use this Link.

We explain how we canmanage long-running benchmarks. There are many useful tools to conducting
benchmarks such as timeit, cprofile, line_profiler, and memry_profiler to name only a
few. However, we present here an extremely easy way to obtain runtimes while dealing with the fact
that they could run multiple hours or even days and could cause your system to crash. Hence if we
wor to run it in a single program it will lead to a loss of information and many hours of unneeded
replication.

We use and demonstrate howwe achieve this with a simple StopWatch, creation of shell scripts and
even the integration of Jupyter notebooks.

. 60

https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi
https://www.microsoft.com/en-us/p/ubuntu/9nblggh4msv6?activetab=pivot:overviewtab
https://laszewski.medium.com/easy-benchmarking-of-long-running-programs-82059d9c67ce
https://laszewski.medium.com/easy-benchmarking-of-long-running-programs-82059d9c67ce?sk=7ed2ca2dacf7253c41e7ca4e180e2e1a

MPI with Python September 3, 2022

10.4.1 Prerequisites

As usual, we recommend that you use a virtual env. dependent on where your python 3 is installed,
please adapt accordingly (python, or python3). Also, test out which version of python you have. On
Windows, we assume you have gitbash installed and use it.

1 $ python3 -- version # observe that you have the right version
2 $ python3 -m venv ~/ENV
3 $ source ~/ENV3/bin/activate
4 # or for Windows gitbash
5 # source ~/ENV3/Scripts/activate

10.4.2 System Parameters

It is essential that we benchmark programs to show their e�ect on the time consumed to obtain the
results. Various factors play a role. This includes the number of physical computers involved, the
number of processors on each computer, the number of cores on each computer, and the number of
threads for each core. We can summarise these parameters as a vector such as

1 S(N, p, c, t)

Where

• S = is a placeholder for the system
• N = Number of computers or nodes
• p = Number of processors per node
• c = Number of cores per processor
• t = Number of threads per processor

In some cases, it may bemore convenient to specify the total values as

1 S^T(N, N*p, N*p*c, N*p*c*t)

and

• T = indicates total

In the case of heterogeneous systems, we define multiple such vectors to form a list of vectors.

For the rest of the section, we assume the system is homogeneous.

10.4.2.1 System Information Cloudmesh provides an easy command that can be used to obtain
information to derive these values while using the command. However, it only works if the number of
processors on the same node is 1.

. 61

MPI with Python September 3, 2022

1 pip install cloudmesh-cmd5
2 cms help # call it after the install as it sets some defaults
3 cms sysinfo

The output will be looking something like

1 +------------------+--+
2 | Attribute | Value |
3 +------------------+--+
4 | cpu | Intel(R) Core(TM) i7-7920HQ CPU @ 3.10GHz |
5 | cpu_cores | 4 |
6 | cpu_count | 8 |
7 | cpu_threads | 8 |
8 | frequency | scpufreq(current=3100, min=3100, max=3100) |
9 | mem.active | 5.7 GiB |
10 | mem.available | 5.8 GiB |
11 | mem.free | 96.7 MiB |
12 | mem.inactive | 5.6 GiB |
13 | mem.percent | 63.7 % |
14 | mem.total | 16.0 GiB |
15 | mem.used | 8.2 GiB |
16 | mem.wired | 2.4 GiB |
17 | platform.version | 10.16 |
18 | python | 3.9.5 (v3.9.5:0a7dcbdb13, ...) |
19 | python.pip | 21.1.2 |
20 | python.version | 3.9.5 |
21 | sys.platform | darwin |
22 | uname.machine | x86_64 |
23 | uname.node | mycomputer |
24 | uname.processor | i386 |
25 | uname.release | 20.5.0 |
26 | uname.system | Darwin |
27 | uname.version | Darwin Kernel Version 20.5.0: |
28 | user | gregor |
29 +------------------+--+

To obtain the vectors you can say

1 cms sysinfo -v
2 cms sysinfo -t

where -v specifies the vector and -t the totals. Knowing these values will help you structure your
benchmarks.

10.4.2.2 Parameters A benchmark is typically run while iterating over a number of parameters and
measuring some system parameters that are relevant for the benchmark, such as the runtime of the
program or application.

Let us assume our application is called f and its parameters are x and y

. 62

MPI with Python September 3, 2022

To create benchmarks over x and y we can generate them in various ways.

10.4.2.3 Python only solution For all programs, we will store the output of the benchmarks in a
directory called benchmark. Please create it.

1 $ mkdir benchmark

youmay be able to run your benchmark simply as a loop this is especially the case for smaller bench-
marks.

1 import pickle
2 from cloudmesh.common.StopWatch import StopWatch
3
4 def f(x,y, print_benchmark=False, checkpoint=True):
5 # run your application with values x and y
6 print (f"Calculate f({x},{y})")
7 StopWatch.start(f"f{x},{y}")
8 result = x*y
9 StopWatch.stop(f"f{x},{y}")
10 if print_benchmark:
11 StopWatch.benchmark()
12 if checkpoint:
13 pickle.dump(result, open(f"benchmark/f-{x}-{y}.pkl", "wb"))
14 return result
15
16 x_min = 0
17 x_max = 2
18 d_x = 1
19 y_min = 0
20 y_max = 1
21 d_y = 1
22 for x in range(x_min, x_max, dx):
23 for y in range(y_min, y_max, dy):
24 # run the function with parameters
25 result = f(x ,y, print_benchmark=True)

10.4.2.4 Script solution In some cases, the functions themselves may be large and in case the
benchmark causes a crash of the python program executing it we would have to start over. In such
cases, it is better to develop scripts that take parameters so we can execute the program through shell
scripts and exclude those that fail.

For this, we rewrite the python program via command-line arguments that we pass along.

1 # stored in file f.py
2 import click
3
4 @click.command()
5 @click.option('--x', default=20, help='The x value')
6 @click.option('--x', default=40, help='The y value')

. 63

MPI with Python September 3, 2022

7 @click.option('--print_benchmark', default=True, help='prints the
benchmark result')

8 @click.option('--checkpoint', default=True, help='Creates a checkpoint'
)

9 f(x,y, print_benchmark=False, checkpoint=True):
10 ... see previous program
11 return result
12
13 if __name__ == '__main__':
14 f()

Nowwe can run this programwith

1 $ python f.py --x 10 --y 5

To generate now the di�erent runs from the loop we can do it either via Makefiles or write a program
creating commands where we produce a script listing each invocation. Let us call this program sweep
-generator.py.

1 x_min = 0
2 x_max = 2
3 d_x = 1
4 y_min = 0
5 y_max = 1
6 d_y = 1
7 for x in range(x_min, x_max, dx):
8 for y in range(y_min, y_max, dy):
9 print (f"cms banner f({x}, {y}; "
10 f"python f.py --x {x} --y {y}")

The result will be

1 cms banner f(0,0); python f.py --x 0 --y 0
2 ...

and so on. The banner will print a nice banner before you execute the real function so it is easier to
monitor when execution

To create a shell script, simply redirect it into a file such as

1 $ python sweep-generator.py sweep.sh

Now you can execute it with

1 $ sh sweep.sh | tee result.log

The tee command will redirect the output to the file result, while still reporting its progress on the
terminal. In case you want to run it without monitoring or tee is not supported properly you just run it
as

1 $ sh sweep.sh >result.log

. 64

MPI with Python September 3, 2022

In case you need to monitor the progress for the latter you can use

1 $ tail -f result.log

The advantage of this approach is that you can in case of a failure identifywhich benchmarks succeeded
and exclude them from your next run of sweep.sh so you do not have to redo them. This may be
useful if you identify that you ran out of resources for a parameterized run and it crashed.

10.4.2.5 Integrating timers Thebeauty about cloudmesh is that it has built-in timers and if properly
used we can use them even across di�erent invocations of the function f.

we simply have to fgrep to the log file to extract the information in the csv lines with

1 fgrep "#csv" result.log

This can then be further post-processed.

Cloudmesh also includes a cloudmesh.Shell.cm_grep, cloudmesh.common.readfile, and
other useful functions to make the processing of shell scripts and their output easier.

10.4.2.6 Integration of Jupyter Notebooks Jupyter notebooks provide a simple mechanism to
prototype. However, how do we now integrate them into a benchmarking suite? Certainly, we can just
create the loop in the notebooks conducting the parameter sweep, but in case of a crash, this becomes
highly unscalable.

So what we have to do is augment a notebook so that we can

1. pass along the parameters,
2. execute it from the command line.

For this, we use papermill that allows us to just do these two tasks. INstall it with

1 pip install papermill

Then when you open up jupyter-lablab and import our code. Create a new cell. In this cell you place all
parameters for your run that you like to modify such as

1 x = 0
2 y = 0

This cell can be augmented with a tag called “parameters”. To do this open the “cog” and enter in the
tag name “parameters”. Make sure you save the tag and the notebook. Now we can use papermill to
run our notebook with parameters such as

1 $ mkdir benchmark
2 $ papermill sweep.ipynb benchmark/sweep-0-0.ipynb --x 0 --y 0 | tee

benchmark/result-0-0.log

. 65

MPI with Python September 3, 2022

3 ...

Naturally, we can auto-generate this as follows

1 x_min = 0
2 x_max = 2
3 d_x = 1
4 y_min = 0
5 y_max = 1
6 d_y = 1
7 for x in range(x_min, x_max, dx):
8 for y in range(y_min, y_max, dy):
9 print (f"cms banner f({x}, {y}; "
10 f"papermill sweep.ipynb benchmark/sweep-{x}-{y}.ipynb"
11 f" --x {x} --y {y}"
12 f" | tee benchmark/result-{x}-{y}.log")

This will produce a series of commands that we can also redirect into a shell script and then execute

10.4.3 Combining the logs

As we have the logs all in the benchmark directory, we can even combine them and select the csv
lines with

1 $ cat benchmark/*.log | fgrep "#csv"

Now you can apply further processing such as importing it into pandas or any other spreadsheet-like
tools you like to use for the analysis.

11 Assignments

1. Develop a section explaining what MPI-IO is

2. Develop a section to explain Collective I/O with NumPy arrays.

3. Add a section on how to use Numpy with MPI, including the installation of NumPy. This is not to
have a tutorial about numpy, but how to use numpy within mpi4py. Subtasks include

1. Download Numpy with pip install numpy in a terminal

2. import numpy as np to use NumPy in the program

3. Explain the advantages of NumPy over pickled lists

• Numpy stores memory contiguously
• Uses a smaller number of bytes
• Canmultiply arrays by index

. 66

MPI with Python September 3, 2022

• It is faster
• Can store di�erent data types, including images
• Contains random number generators

4. Add a specific, very small tutorial on using some basic numpy features as they may be
useful for MPI application development. This may include the following and be added to
the appendix

1. To define an array type: np.nameofarray([1,2,3])
2. To get the dimension of the array: nameofarray.ndim
3. To get the shapeof the array (the number of rows and columns): nameofarray.shape
4. To get the type of the array: nameofarray.dtype
5. To get the number of bytes: nameofarray.itemsize
6. To get the number of elements in the array: nameofarray.size
7. To get the total size: nameofarray.size * nameofarray.itemsize

Please, note that we have a very comprehensive tutorial on NumPy and there is no point to
repeat that, wemay just point to it and improve that tutorial where needed instead.

4. Convert the parallel rank program from https://mpitutorial.com/tutorials/performing-parallel-
rank-with-mpi/ to mpi4py. Write a tutorial for it.

5. Develop tutorials that showcasemultiple communicators and groups. See https://mpitutorial.
com/tutorials/introduction-to-groups-and-communicators/

6. Complete the count example while adding a broadcast to it to communicate the parameters.
Provide a modified tutorial.

7. Test out the machinefile, host, and rankfile section. Improve if needed.

References

[1] G. von Laszewski, “Python for Cloud Computing,” Indiana University, Bloomington IN, U.S.A.,
Online Book, Feb. 2020 [Online]. Available: https://cloudmesh-community.github.io/pub/vonL
aszewski-python.pdf

[2] “MPICH: High-Performance Portable MPI.” Sep-2021 [Online]. Available: https://www.mpich.org

[3] “Open MPI: Open Source High Performance Computing.” Sep-2021 [Online]. Available: https:
//www.open-mpi.org

[4] “Intel MPI Library,” Intel. Sep-2021 [Online]. Available: https://so�ware.intel.com/content/ww
w/us/en/develop/tools/oneapi/components/mpi-library.html#gs.c5q095

. 67

https://mpitutorial.com/tutorials/performing-parallel-rank-with-mpi/
https://mpitutorial.com/tutorials/performing-parallel-rank-with-mpi/
https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
https://cloudmesh-community.github.io/pub/vonLaszewski-python.pdf
https://cloudmesh-community.github.io/pub/vonLaszewski-python.pdf
https://www.mpich.org
https://www.open-mpi.org
https://www.open-mpi.org
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html#gs.c5q095
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html#gs.c5q095

MPI with Python September 3, 2022

[5] “Microso� MPI - Message Passing Interface.” Sep-2021 [Online]. Available: https://docs.microso
�.com/en-us/message-passing-interface/microsoft-mpi

[6] “MPI Solutions for GPUs,” NVIDIA Developer. May-2021 [Online]. Available: https://developer.nv
idia.com/mpi-solutions-gpus

[7] “Cornell Virtual Workshop: Exercise: Monte Carlo with mpi4py.” Sep-2021 [Online]. Available:
https://cvw.cac.cornell.edu/python/exercise

. 68

https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://developer.nvidia.com/mpi-solutions-gpus
https://developer.nvidia.com/mpi-solutions-gpus
https://cvw.cac.cornell.edu/python/exercise

	Preface
	Acknowledgement
	Online Availability
	Document Management in GitHub
	Document Notation

	Introduction
	Installation
	Python Version
	Operating Systems and MPI Versions
	Getting the CPU Count
	Windows 10 Home, Education, or Pro
	macOS
	Ubuntu
	Raspberry Pi
	Testing the Installation

	Hosts, Machinefile, Rankfile
	Running MPI on a Single Computer
	Running MPI on Multiple Computers
	Prerequisite
	Using Hosts
	Machinefile
	Rankfiles for Multiple Cores

	MPI Functionality
	Differences to the C Implementation of MPI
	Initialization
	Capitalization for Pickle vs. Memory Messages
	Using NumPy with mpi4py

	MPI Functionality
	Communicator
	Point-to-Point Communication

	Collective Communication
	Broadcast
	Scatter
	Gather
	Allgather Memory Objects

	Process Management
	Dynamic Process Management with spawn
	Futures

	MPI Example Programs
	MPI Ring Example
	Counting Numbers
	Monte Carlo Calculation of Pi
	Numba
	Running Monte Carlo on multiple hosts

	Mandelbrot
	Assignments

	Other MPI Example Programs
	GPU Programming with MPI

	Parameter Management
	Using the Shell Variables to Pass Parameters
	Using click to pass parameters

	SLURM
	Installation of SLURM on a Raspberry Pi Cluster
	Method 1 - Install from Host
	Method 2 - Install on Manager

	Install SLURM on a Single Raspberry Pi
	MPI Example

	Links to Other Documents
	Assignment

	Appendix
	Git Bash on Windows
	Make on Windows
	Installation

	Installing WSL on Windows 10
	Benchmarks
	Prerequisites
	System Parameters
	Combining the logs

	Assignments
	References

