
Project 4: HBase WordCount

Cloud Computing

Spring 2017

Professor Judy Qiu

Goal

Write an HBase WordCount program to count all unique terms’ occurrences from the clueWeb09 dataset.
Each row record of columnfamily ”frequencies” is unique; the rowkey is the unique term stored in byte
format, column name is ”count” and value is the term frequency shown in all documents. Load the result
to HBase WordCountTable. Figure 1 shows the schema of WordCountTable. You will compare the results
of your finished run to a correct version we will supply to you.

Figure 1: WordCount table schema for storing unique term’s occurrences

Deliverables

Zip your source code and report in a file named username project4.zip

Evaluation

The point total for this project is 1.5, where the distribution is as follows:

• Correctness of your code and output (1 points)

• Completeness of written report (0.5 points)

• The report should explain the logic behind your code.

Prerequisites

You?ll need to load data to HBase before trying this assignment. Please follow project4 Prereq.pdf for
more information.

1

Introduction

WordCount is a simple program which counts the number of occurrences of each word in a given text input
dataset. It fits very well with the map/reduce programming model, making WordCount a great example to
understand the Hadoop MapReduce programming style. Instead of loading the data from HDFS, we will
load our data directly from existing HBase records which store the similar content structures on HBase and
HDFS.

In this homework and the next homework (Building an Inverted Index) we use the same source code,
which can be found in: /root/MoocHomeworks/HBaseWordCount.

Clueweb09 dataset

We are using the ClueWeb09 dataset, which was created to support research on information retrieval and
related human language technologies. It consists of about 1 billion webpages in ten languages that were
collected in January and February 2009. The dataset is used by several tracks of the TREC conference[2].
Since the ClueWeb09 dataset is composed of webpages crawled from the Internet, the uploaded table schemas
are designed as shown in Figure 2.

Figure 2: Data table schema for storing the ClueWeb09 dataset

So, while similar to Hadoop WordCount [3], the differences are that data is stored on HBase and URI is
the ”filename” that contains all the text content.

Mapper, Reducer and Main Program

Now we are going to implement the HBase WordCount. Our implementation consists of three main parts:

• Mapper

• Reducer

• Main program

Mapper

A Mapper overrides the map function from the Class ”org.apache.hadoop.hbase.mapreduce.TableMapper<Text,
LongWritable>” which provides <key, value> pairs as the input. A Mapper implementation may output
<key, value> pairs using the provided Context. <key, value> of this map function is <rowkey, content>,
where the key is the rowkey of an HBase record related to a specified URI, and the content is the stored text
of that URI. Your Map task should output <word, frequency> for each word in the content of text.

Pseudocode

1 void Map (key , va lue) {
2 f o r each word x in the content o f a hbase record :
3 context . wr i t e (x , f r e q) ;
4 }

Detailed implementation

2

1 s t a t i c c l a s s WcMapper extends TableMapper<Text , LongWritable> {
2 @Override
3 pub l i c void map(ImmutableBytesWritable row , Result r e su l t , Context context) throws

IOException , Inte r ruptedExcept ion {
4 byte [] contentBytes = r e s u l t . getValue (Constants .CF DETAILS BYTES, Constants .

QUAL CONTENT BYTES) ;
5 St r ing content = Bytes . t oS t r i ng (contentBytes) ;
6

7 // TODO: wr i t e your implementation f o r count ing words in each row , and gene ra t ing a <
word , count> pa i r

8 // Hint : use the ”getWordFreq” func t i on to count the f r e qu en c i e s o f words in content
9

10 }
11 }

Reducer

A Reducer collects the intermediate <key, value> output from multiple map tasks and assembles a single
result. Here, the reducer function will sum up the occurrence of each word to pairs as <word, occurrence >,
then write it back to an HBase table with put operations which contain the key-value pair information of
each word. Pseudocode

1 void Reduce (keyword , < l i s t o f value>){
2 f o r each x in < l i s t o f value >:
3 sum+=x ;
4 context . wr i t e (rowkey (x) , f r e q) ;
5 }

Detailed implementation

1 pub l i c s t a t i c c l a s s WcReducer extends TableReducer<Text , LongWritable ,
ImmutableBytesWritable> {

2 @Override
3 pub l i c void reduce (Text word , I t e r ab l e<LongWritable> f r eq s , Context context)
4 throws IOException , Inter ruptedExcept ion {
5 /∗TODO: wr i t e your implementation f o r g e t t i n g the f i n a l count o f each word
6 and putt ing i t i n to the word count tab l e
7 Hint −− the schema o f the WordCountTable i s :
8 rowkey : a word , column fami ly : ” f r e qu en c i e s ” ,
9 column name : ” count ” , c e l l va lue : count o f the word

10 Check iu . p t i . hbaseapp . Constants f o r the constant va lue s to use .
11 ∗/
12 long to ta lFreq = 0 ;
13 }
14 }
15

Main program

The main function has been provided as standard initialization, although you can modify it to suit your own
style. Hint: the provided code is designed for using put operations in the reducer content.write() function.
Before writing the codes, please read the HBase MapReduce tutorial first [4].

Edit

The sketch code is stored within the provided VirtualBox image Environment Setup. You may use linux
text editor vi/vim to add your code.

1 $ cd / root /MoocHomeworks/HBaseWordCount/
2 $ vim s r c / iu / p t i /hbaseapp/ clueweb09/WordCountClueWeb09 . java
3

3

Compile and run your code

For your convenience, we have provided a one-click script compileAndExecWordCount.sh for compiling and
execution. Standard error messages such as ”compile errors, execution errors, etc.” will be redirected on the
screen. You may debug it based on the returned messages.

1 $ cd / root /MoocHomeworks/HBaseWordCount
2 $. / compileAndExecWordCount . sh

View the result

The result is generated as /root/MoocHomeworks/HBaseWordCount/output/project1.txt.

1 $ cd / root /MoocHomeworks/HBaseWordCount
2 $ cat output / p ro j e c t 1 . txt

References

[1] Clueweb09 dataset. http://lemurproject.org/clueweb09/.

[2] Hadoop WordCount. http://salsahpc.indiana.edu/csci-b649-spring-2014/projects/project1.

html.

[3] HBase MapReduce Examples. http://hbase.apache.org/book/mapreduce.example.html.

4

